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Abstract. The magnetic fields of stellarators and, in general, all not strictly axisymmetric toroidal fusion devices
exhibit magnetic islands. Codes that determine finite-plasma-β stellarator equilibria while fully accounting for
their island structures exist. Equilibria obtained for the National Compact Stellarator Experiment (NCSX) and
the Wendelstein 7-X stellarator using the Princeton Iterative Equilibrium Solver (PIES) code are presented. An
alternative approach to the assessment of magnetic islands in finite-β stellarator equilibria has been developed with
the method of perturbed equilibria. Since a perturbed equilibrium represents a small deviation from an equilibrium,
ideal magnetohydrodynamic (MHD) stability theory and ideal MHD stability codes, e.g. the Code for the Analysis
of 3-dimensional Equilibria (CAS3D), can be used to determine a perturbed equilibrium. Discontinuities of the
normal displacement at rational surfaces indicate surface currents which are used to model islands: the strength of
such a surface current can be used to estimate the corresponding island width. The alternative method to determine
islands within ideal MHD was implemented in the CAS3D code and yields island sizes comparable to the ones
given by the PIES code.

1. Introdution

The magnetic fields of stellarators and, in general, all not strictly axisymmetric toroidal fusion
devices exhibit magnetic islands. They strongly influence the confinement properties and are
exploited in divertor design. So, the existence and the structure of the magnetic islands are
an important issue in configuration design. Codes that determine finite-plasma-β stellarator
equilibria while fully accounting for their island structures exist. Of particular importance for
stellarator applications are the Princeton Iterative Equilibrium Solver (PIES) [1] and the HINT
code [2]. From the theory of perturbed equilibria a different method has been developed to study
islands in stellarator plasma [3]. For the study presented here, the PIES code has been applied
to the National Compact Stellarator Experiment (NCSX) [4] and the Wendelstein 7-X (W7-X)
stellarator [5]. The purpose of this paper is to describe both methods and to present numerical
calculations with a comparison of the results.

2. The PIES Code

The PIES code (Princeton Iterative Equilibrium Solver) [1] solves for stellarator symmetric
MHD equilibria defined by

~×~B = ∇p, ∇×~B = µ0~, ∇ ·~B = 0. (1)
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Figure 1: Poincaré plot showing
the upper half of the triangular
cross-section of an NCSX finite-β
fixed-boundary PIES calculation,
〈β 〉= 0.04.

Contrary to the VMEC code (Variational Moments Equi-
librium Code) [6], where the plasma volume is fixed by
input parameters and flux surfaces are assumed, PIES
makes no a priori assumption about the existence of
closed flux surfaces.

Any computation of the magnetic induction, ~B, requires
knowledge of the current density, ~. The spatial structure
of ~, in turn, depends on the existence and integrity of
flux surfaces of ~B. As there is no simple way to determine
a priori whether a field line launched from any starting
point forms a closed flux surface, a magnetic island or
behaves stochastically, PIES employs a Picard iteration to
obtain a solution for Eq. (1). This approach was proposed
in Ref. [7]. During each iteration, i, PIES computes the
spatial distribution of the current density, ~(~Bi). Then the
current density is used to compute the new magnetic field:

∇×~Bi+1 = µ0~(~Bi). (2)

Unfortunately, the unmodified iteration (2) is observed to
be unstable for plasma pressures of relevant magnitude.
Therefore, convergence is established by blending quan-
tities of the latest iteration with those of the preceding
one.

~Bi+1 = (1−b) ·~B(~Ji)+b ·~Bi, (3)

where b is a blending parameter.

For W7-X [5] cases like the one presented in this publication, with 〈β 〉 ≥ 4% and large num-
bers of Fourier modes (m=10 poloidal, n=8 toroidal) describing equilibrium quantities, large
values, typically b = 0.99 . . .0.999, are needed for the blending parameter. It follows that the
rate of convergence is reduced and some 102 to 103 iterations are required before a sufficiently
converged solution is obtained.

3. PIES Calculations

3.1. NCSX

In the NCSX standard high-β scenario low-order rotational-transform values exist inside the
plasma [8]. A fixed-boundary PIES calculation for an NCSX-type case at 〈β 〉= 0.04 has a very
similar magnetic topology, see Figure 1 with half of a poloidal cut for this case in the (ϑ ,rn)
plane. Here, 0 ≤ ϑ ≤ 2π is a poloidal angle, and 0 ≤ rn ≤ 1 a normalized radius. Several 3/m
and 6/m islands can be seen, e.g. 3/5 and 3/6 in this 3-periodic device.



3 TH/P9-9

4.5 5 5.5 6 R [m]
0

0.5

Z
 [

m
]

Figure 2: Poincaré plot showing the upper half of the triangular cross-section of a W7-X finite-β
PIES calculation, 〈β 〉= 0.05. Flux surfaces from a VMEC calculation are shown in red.

3.2. W7-X

For the 5-periodic W7-X stellarator the situation is different: In the standard high-β case no low-
order rationals exist inside the plasma. However, W7-X will be equipped with independently
powered primary field coils and with planar auxiliary coils. These features will allow W7-X to
access operating regimes with increased or reduced rotational transform as well as enhanced or
reduced mirror component of the magnetic field and an inward or outward shift of the magnetic
axis [9].
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Figure 3: ι profiles of the vacuum field (solid line), the
VMEC equilibrium obtained from the MFBE procedure
(dash-dot-dot) and from the PIES calculation (dashed). It
can be seen that the plasma volume is reduced significantly
by the introduction of finite plasma pressure.

This implies that equilibria with
low order rationals inside the con-
finement region are in principle
possible. The equilibrium calcu-
lation presented in [10], although
free of significant internal is-
lands, depends on the capability
to adjust the magnetic field.

Recently, the PIES code was used
to obtain a free boundary equilib-
rium at 〈β 〉= 5% which exhibits
a chain of ι = 5/6 islands inside
the plasma (see Fig. 2). In calcu-
lations using the Magnetic Field
Solver for Finite-Beta Equilibria
(MFBE) [11] preceding the PIES
computation, a configuration of
coil currents similar to one previ-
ously successful at β = 4% [10]
was selected. This configuration
employs the auxiliary coils, ener-
gised so as to increase the con-
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finement volume of the vacuum field by shifting the magnetic axis inward and adjusting the
ι profile.

The plasma volume is reduced from 35.2m3 in the vacuum field to ∼ 15m3 at 〈β 〉 = 5%. the
iota profile of both the vacuum and the finita β fields computed by VMEC and PIES are shown
in Fig. 3

The computation was carried out with 10 poloidal and 8 toroidal modes on N = 70 coordinate
surfaces. A total of 6200 iterations was used in the final coordinate system.

4. Perturbed Equilibrium Method

An alternative approach to the assessment of magnetic islands in finite-β stellarator equilibria
has been developed with the method of perturbed equilibria [3]. Since a perturbed equilibrium
represents a small deviation from an equilibrium, it can be determined by ideal magnetohydro-
dynamic (MHD) stability theory and ideal MHD stability codes. For tokamak geometry this
concept has been used in the IPEC code [12]. For general geometry and, hence, suitable for
the study of stellarator cases, the procedure was implemented in the Code for the Analysis of
3-dimensional Equilibria (CAS3D) [13].

An initial plasma state, not necessarily in equilibrium, is given by a set of surfaces, together with
the rotational transform, ι , and pressure, p, profiles. The VMEC 3d ideal MHD equilibrium code
[6] is used here. This code assumes nested surfaces. The obtained data is mapped to magnetic
coordinates (s,θ ,φ), with the magnetic field ~B representation

~B = I∇φ + J∇θ + β̃∇s =− F ′
T√
g
~r,φ −

F ′
P√
g
~r,θ (4)

In Eq. (4), the poloidal (toroidal) currents are denoted by I (J); the poloidal (toroidal) fluxes are
FP (FT). Primes denote derivatives of flux surface functions, f ′ = d f /ds. The Jacobian is

√
g.

For an equilibrium state the ideal MHD force balance holds, ∇p =~×~B, Eq. (1). A perturbed
equilibrium is described by

∇(p+δ p) = (~+δ~)× (~B+δ~B) , (5)

and by the stationarity of the variation

δW = δ
1W +δ

2W =
∫

(∇p−~×~B) ·~ξ d3r− 1
2

∫
~ξ ·F

[
~ξ

]
d3r (6)

In Eq. (6) F is the ideal MHD force operator. In CAS3D δW is made stationary with a Galerkin
method giving a set of linear equations. The RHS~g is given by δ 1W , the system matrix by δ 2W .
For the perturbed equilibrium one may write

F
[
~ξ

]
=~g . (7)

The boundary conditions for the normal displacement, ξ s =~ξ ·∇s, used with Eq. (7) determine
the type of perturbed equilibrium. In a study of stellarator intrinsic islands ξ s(boundary) ≡ 0
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Figure 4: CAS3D result for the NCSX-type case of Fig. 1: The dominant normal displacement
harmonics versus normalized toroidal flux s. Resonant harmonics (coloured lines) may jump at
their respective rational surfaces (dashed). The rational ι values are given.

is chosen, which means that the plasma boundary is not perturbed. In the case of a perturbed
boundary-shape or external field the normal displacement is prescribed a finite value on the
plasma boundary, ξ s(boundary) 6= 0.

In either case, resonant error fields produce islands. In ideal MHD, a surface current, ~surf, is
employed on the rational surface which prevents an island from opening,

~n ·
[
δ~B

]
= 0

~n×
[
δ~B

]
= µ0 ~surf (8)

So, the augmented CAS3D code allows for a generalized class of MHD eigenfunctions which
may have jumps in resonant normal displacement harmonics on the respective rational surface.
The discontinuities of the normal displacement at rational surfaces indicate surface currents
which are used to model islands: the strength of such a surface current can be used to estimate
the corresponding island width.

4.1. Applications
ι PIES CAS3D

3/5 0.110 0.103
3/6 0.041 0.040
3/7 0.023 0.019
6/9 0.050 0.045

Table 1: Normalized island sizes,
W /aminor, from the PIES and CAS3D
codes for the NCSX-type case of Fig. 1
(lowest-order islands, aminor = 0.32 m).

The augmented CAS3D code was applied to the
stellarator cases of Figs. 1 and 2 for a study of
the intrinsic islands. This means that Eq. (7) was
used with a non-vanishing RHS ~g and homoge-
neous boundary conditions, ξ s(boundary)≡ 0. The
surface current on a rational-ι surface which is used
to determine an island width is related to the discon-
tinuities of the resonant normal displacement har-
monics at the respective resonant surfaces and fol-
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Figure 5: CAS3D result for the W7-X case of Fig. 2: The dominant normal displacement har-
monics versus normalized toroidal flux s, toroidal Fourier index: n = 5. The resonant harmonic
(m = 6, red) jumps at its rational surface (dashed). Non-resonant harmonics (e.g. m = 5 and
m = 7) are continuous everywhere.

lows from Eq. (8). In a study of intrinsic islands, the toroidal periodicity of the perturbations
must be compatible with the number of field periods of the stellarator.

The result for the NCSX-type case is shown in Fig. 4. The CAS3D calculation used 481 radial
points and 66 normal displacement harmonics including 24 resonant ones. The perturbation
Fourier table included toroidal Fourier indices n = 3,6,9, and 12, and poloidal Fourier indices
0 ≤ m ≤ 34. The result shows that the resonant harmonics do not vanish interior to their re-
spective resonant surfaces which is a consequence of the mode coupling in general-geometry
plasmas. In a cylinder the mode coupling is absent and, therefore, complete shielding prevails
at the resonant surfaces [14]. For the lowest-order islands at ι = 3/7,3/6,3/5, and 2/3 = 6/9
the normalized island sizes as computed by the PIES and CAS3D codes have been compared,
see Table 1. Good agreement has been found.

The result for W7-X is shown in Fig. 5. The low-order rational rotational transform, ι = 5/6, oc-
curs at 40% of the total enclosed toroidal flux. The CAS3D calculation used 100 radial intervals
and 15 normal displacement harmonics one of them being resonant (m = 6, n = 5). The per-
turbation Fourier table included toroidal Fourier indices n = 0,5, and 10, and poloidal Fourier
indices up to m = 9. Although mode coupling prevents the resonant perturbation harmonics
from being completely shielded at the respective resonant surfaces, the shielding is significant.
The CAS3D analysis predicts an island width of ≈ 0.029m which is comparable to the PIES
result of ≈ 0.027m.
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5. Summary

For the W7-X and NCSX stellarators finite-β equilibria with magnetic islands have been ob-
tained with the PIES code. The alternative method to determine islands within ideal MHD uses
the concept of perturbed equilibria implemented in the CAS3D code and yields island sizes
comparable to the ones given by PIES.
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