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Abstract. With the tantalizing prospect that localized regions of chaotic magnetic field can

be used to suppress ideal instabilities in fusion devices, as suggested by the resonant magnetic

perturbation (RMP) experiments on DIIID [1], it becomes necessary to understand the impact

of chaotic fields on confinement, particularly so considering that RMP fields are being considered

as an ELM mitigation strategy for ITER. Using a model of heat transport for illustration, this

paper will show that chaotic fields can support temperature gradients, despite the fact that

flux surfaces may be destroyed by applied error fields. The remnants of the irrational flux

surfaces, the cantori [2], present extremely effective partial-barriers to field-line transport, and

thus present effective barriers to any transport process that is dominantly parallel to the field.

We extend the concept of magnetic coordinates to chaotic fields, and show that the temperature,

generally a function of three-dimensional space, takes the simple form T (s), where s labels the

chaotic-coordinate surfaces.

1. The Challenges of Chaotic Fields

A variety of transport processes in magnetically confined plasmas are dominated by strong

parallel transport along the magnetic field B, with small perpendicular transport. Coor-

dinates adapted to the structure of the magnetic field, magnetic coordinates, therefore

provide an elegant theoretical description of plasma dynamics and often enhance nu-

merical accuracy. Magnetic coordinates are analogous to the action-angle coordinates of

Hamiltonian systems and may be constructed globally when the magnetic field-lines lie

on nested, invariant toroidal surfaces, ie. when the field is integrable. Integrable magnetic

fields are however the exception rather than the rule. Error fields [1] or internal plasma

motions, eg. microtearing instabilities [3], result in partially chaotic magnetic fields in

tokamaks, and chaotic fields are intrinsic to the non-symmetric stellarator [4].

Here we present a coordinate framework adapted to the structure of chaotic magnetic

fields, which we call chaotic magnetic coordinates, and show that this framework allows a

simple description of anisotropic transport. We consider heat transport, as described by

∂T

∂t
= ∇ ·

(

κ‖∇‖T + κ⊥∇⊥T
)

+Q, (1)

where T is the temperature, t is time, and κ‖, κ⊥ are the (constant) parallel and per-

pendicular diffusion coefficients. The parallel derivative, ∇‖T , is given ∇‖T = bb · ∇T ,

where b = B/|B|, and the perpendicular derivative is ∇⊥T = ∇T − ∇‖T . The term Q
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allows for heat sources/sinks, but we set this to zero and examine the non-trivial, steady

state solutions forced by inhomogeneous boundary conditions.

For fusion plasmas, the ratio κ‖/κ⊥ may exceed 1010 [5]. Strong anisotropy has different

consequences, depending on whether the magnetic field-lines lie on nested flux surfaces,

whether the field is slightly chaotic, or whether the field is so chaotic that the motion of

field-lines is effectively random. In the first case the temperature is a surface function, T =

T (ψ), where ψ labels flux surfaces, and gradients can be supported. For the opposite case

of extreme chaos, where the field-lines seem to wander randomly over a volume, the strong

parallel transport results in temperature flattening, T = const. It is the intermediate case

of critical (near threshold) chaos that is most relevant for toroidal plasma confinement.

The temperature is then dominated by the fractal structure of the chaotic magnetic field.

How chaotic magnetic coordinates allow this structure to be understood is the topic of

this letter.

A chaotic magnetic field is a fractal mix of (i) invariant flux (KAM) surfaces [6, 7], which

are labeled by their irrational rotational-transform; (ii) cantori (broken KAM surfaces), in

particular the near-critical cantori which present effective but partial barriers to field-line

transport [2]; (iii) unstable periodic orbits and their unstable manifolds which constitute

the stochastic sea; and (iv) stable periodic orbits and elliptic island chains [6, 7].

The complexity of the field structure dictates that Eq.(1) must be solved numerically

[8, 9], but this is not an easy task. The temperature must be represented as a scalar field

of three-dimensional space, T = T (ψ, θ, φ), where θ, φ are arbitrary poloidal and toroidal

angles. The infinitely many irregular field-lines in the stochastic sea may come arbitrarily

close to each other. For large κ‖ the temperature along the field-lines is almost constant,

and for small κ⊥ the cross field interaction is very weak. The temperature becomes a

fractal function of position as κ‖/κ⊥ increases and the resolution requirements become

overwhelming. The challenge is to achieve sufficient accuracy to resolve the near-fractal

structure, ensuring that numerical error, “numerical diffusion”, does not overwhelm the

small perpendicular diffusion.

It would be of great benefit if some theoretical insight allowed the representation of the

temperature to be simplified. For example, on the KAM surfaces, we may expect that the

temperature will be constant. We also know [5] that the temperature will flatten inside

the island chains when the island width, ∆w, exceeds a critical value, ∆w ∼ (κ⊥/κ‖)
1/4.

Within the stochastic sea, it is tempting to conclude that the strong parallel transport

results in a flat temperature profile, or that the transport is uniform. For near-threshold

chaos however, this is an oversimplification. Irregular trajectories, with finite Lyapunov

exponent, may take an impractically long time to sample the accessible volume. Attempts

to determine transport by averaging [10] must take into account that within the stochastic

sea there exists a finite volume of regular motion (the magnetic islands), and what the

relative volume of irregular versus regular motion is remains an open question in non-linear

dynamics. The point is, chaos is not random.
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The key to understanding the structure of the temperature in the stochastic sea is to

realize that the most effective barriers to field-line transport are given by the cantori.

Cantori are the invariant sets under the field-line flow remaining after a KAM surface has

been destroyed by chaos [11–13], but they have an infinity of gaps where field-lines may

leak through. In the near-critical case (when the level of chaos just exceeds that required

to break the KAM surface) the gaps in the cantorus are small, and the field-line flux across

the cantorus is small. As the most robust KAM surfaces have noble rotational-transform

[14], the most important barriers to field-line transport in chaotic fields are usually the

noble cantori. As the level of chaos increases, the gaps in the cantorus enlarge and the

field-line flux increases: super-critical cantori have little effect on field-line transport.

So we have a situation in which regions of local temperature flattening are produced by

the significant islands, between which the irrational barriers may support gradients. If

coordinate surfaces can be constructed that coincide with the irrational barriers, then the

temperature profile will approximate a smoothed devil’s staircase [15]. Clearly, coordinate

surfaces should coincide with any KAM surfaces that exist, but here we consider a region

in which all KAM surfaces are destroyed and the most significant barriers are provided

by the noble cantori. To construct a coordinate framework based on cantori we need to

“close the gaps”, and this can be done by constructing ghost-surfaces, as we now describe.

Cantori are approximated by high-order, action-minimizing periodic orbits [16]. These

are conveniently found using the action formalism of magnetic-field-line dynamics [17].

The action formalism is also required for the construction of the ghost-surfaces, which are

defined using the action-gradient flow. Magnetic field-lines are stationary curves C of the

action integral [18],

SC =

∫

C

A · dl, (2)

where B = ∇×A. We use a vector potential in canonical form A = ψ∇θ − χ∇φ, where

χ(ψ, θ, φ) is the field-line Hamiltonian:

χ = ψ2/2 +
∑

χm,n(ψ) cos(mθ − nφ). (3)

The term ψ2/2 represents the integrable part, and the χm,n represent arbitrary perturba-

tions, which for partially chaotic fields are typically small.

The Euler-Lagrange equation for variations, δC, that extremize Eq.(2) are the field line

equations which take the form of Hamilton’s equations,

dθ

dφ
=

∂χ

∂ψ
, (4)

dψ

dφ
= −∂χ

∂θ
, (5)

where we have used φ as the time-like, curve parameter.
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To employ the action formalism it is required to numerically describe the “trial-curve”

C. A piecewise-linear approximation is sufficient [17], where between φ ∈ [i∆φ, (i+ 1)∆φ]

the curve is given

θ(φ) = θi +
(θi+1 − θi)

∆φ
(φ− φi) (6)

for ∆φ = 2πq/N . A similar representation for ψ could be employed, but we may reduce

the degrees-of-freedom associated with the description of the ψ curve by exploiting Eq.(4).

If the perturbation harmonics χm,n are slowly varying, so that ∂χm,n/∂ψ ∼ O(ε), along

the magnetic field line approximated by any curve θ(φ), ψ is well approximated by

ψ ≈ θ̇ −
∑

χ′
m,n(θ̇) cos(mθ − nφ). (7)

In the following we simplify matters by restricting attention to fields with constant per-

turbation amplitude. In this case we may use ψ = θ̇ and the trial-curve is completely

specified by θ(φ).

We restrict attention to (p, q) periodic curves, θ(φ+ 2πq) = θ(φ) + 2πp, by constraining

θN = θ0 + 2πp. The action integral is now piecewise directly solvable and is a rapidly com-

putable function of the N independent parameters, S(θ0, θ1, . . . , θN−1). Periodic orbits are

those particular trial-curves for which the action gradient, ∇S = (∂S/∂θ1, ∂S/∂θ2, . . . )
T ,

is zero. Finding periodic orbits amounts to a multi-dimensional root find, and an N -

dimensional Newton method is suitable. The derivative of the action gradient, the Hessian

D2S, is a cyclic, tri-diagonal matrix of the second derivatives of S. The action extremizing

approach allows both the stable (minimax) and unstable (minimizing) orbits to be quickly

found, even for orbits with periodicities in the tens of thousands for strongly chaotic fields

[17].

The Hessian at the minimax orbit generically has a single negative eigenvalue, and the

associated eigenvector indicates the direction in configuration space along which the action

integral decreases. Ghost-surfaces are constructed by pushing a trial-curve off the minimax

orbit in this direction, then allowing the curve to evolve down the gradient flow:

dθi
dτ

= −∂S
∂θi

, (8)

where τ is any suitable integration parameter. As the action is decreasing under this

flow, and the curves are constrained to be periodic, the trial-curve will evolve into the

minimizing periodic orbit, and in doing so will trace out a surface, the ghost-surface of

periodicity (p, q).

Ghost-surfaces were originally introduced for the standard map [19, 20] (in this context,

they are called ghost circles), and they were found to be non-intersecting: we have not

found exceptions to this. Any selection of ghost-surfaces may form the framework of the

chaotic coordinates, and by choosing rationals p/q that approximate a given irrational we

may consider irrational ghost-surfaces. To complete the chaotic coordinates, the surfaces
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can be interpolated radially to provide a continuous foliation of space, and a suitable

angle coordinate can be imposed, for example so that each trial-curve comprising the

ghost-surface is straight.

Intuition suggests that the irrational ghost-surfaces that close the gaps in near critical

cantori would coincide with temperature iso-contours. What was unexpected is how

closely the ghost-surfaces coincide for even the strongly super-critical cantori.

2. Structure of the Temperature

To compute steady state solutions of Eq.(1), a second-order finite-difference model is em-

ployed. The parallel and perpendicular diffusions are separated numerically [21] by locally

introducing straight-field line (Clebsch) coordinates (α, β, φ), where B = ∇α×∇β. The

parallel diffusion operator becomes

∇2

‖T = Bφ ∂

∂φ

(

Bφ

B2

∂T

∂φ

)

, (9)

where the partial derivative with respect to φ is along a magnetic field line: for each grid

point (ψi,j, θi,j) on the plane φk = k∆φ, with temperature Ti,j,k, the parallel gradient on

the forward “half-φ” grid is approximated

∂T

∂φ

∣

∣

∣

∣

i,j,k+1/2

=
T (ψ, θ, φk+1) − Ti,j,k

∆φ
, (10)

where (ψ, θ, φk+1) is where the field-line starting from (ψi,j, θi,j , φk) intersects the φk+1

plane, which can always be determined by field line tracing. In general, this point will

not coincide with a grid point, so bi-linear interpolation is used to estimate T (ψ, θ, φk+1).

The quantity ∂φT |i,j,k−1/2 on the backward half-φ grid is defined similarly. The first partial

φ-derivatives on the k+ 1

2
and k− 1

2
half-grids are combined, along with the factors Bφ and

B2, to give a centered, finite-difference realization of the second-order, parallel-diffusion

operator.

For κ‖ À κ⊥, the temperature will vary weakly along magnetic field-lines. So, ∆φ need

not be small. We choose ∆φ = 2π and perform the computation on a single plane. This

reduces the computational burden and allows additional resolution within the plane, ie.

in the perpendicular direction, which is required to resolve the small scale of the solution

for small κ⊥.

The diffusion perpendicular to B is approximated by a diffusion instead perpendicular to

φ. This approximation introduces a negligible error when the field is dominantly toroidal

and when κ⊥/κ‖ is small, and eliminates the need to compute the metric elements of the

(α, β, φ) coordinates, which in principle are determined from differentiating the field-line

integration (ie. constructing the tangent map). The diffusive operator perpendicular to

φ is given by the Laplacian

∇2

⊥T =
√
g−1

[

∂ψ(
√
gTψ) + ∂θ(

√
gT θ)

]

, (11)
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where T ψ = gψψTψ + gψθTθ and T θ = gθψTψ + gθθTθ, where Tψ = ∂T/∂ψ and Tθ = ∂T/∂θ,

and the geometric information is encapsulated in the ‘raising’ metric elements

gab = ∇a · ∇b and the Jacobian,
√
g. The Laplacian is discretized using second-order

finite differences [22].

The steady state condition,

κ‖∇2

‖T + κ⊥∇2

⊥T = 0, (12)

becomes a sparse linear system which is solved using an iterative Krylov method (Bi-

CGStab [23]). We consider the region between two magnetic islands, namely the

(p, q) = (1, 2),(2, 3) islands at ψ = 1

2
and ψ = 2

3
respectively, which are excited by the

χ2,1 and χ3,2 perturbation harmonics in Eq.(3), and we set 2χ2,1 = 3χ3,2 = k, where k

is a perturbation parameter. The symmetry of the field allows T (ψ,−θ) = T (ψ, θ), so a

regular grid in ψ, θ is constructed in the region ψ ∈ [ψl, ψu] and θ ∈ [0, π], where ψl = 0.50

and ψu = 0.68, with grid spacing ∆ψ = (ψu − ψl)/N , ∆θ = 2π/N , where N is the grid

resolution. It is the chaotic structure of the field that is relevant to the present study,

rather than geometry, so we use the simple Cartesian metric, gψψ = gθθ = 1, gψθ = 0, and
√
g = 1. The most robust KAM surface in this region appears to be the ι- = 0.5607..

surface, which has a critical perturbation k = 2.039 × 10−3 [17], so here we set the per-

turbation k = 2.100 × 10−3 to just exceed this critical value to give a field with connected

chaos between the (1, 2) and (2, 3) islands. A Poincaré plot of this field is shown in Fig.1.

The boundary conditions are T (ψ, θ) = 1 for ψ ≤ ψl, and T (ψ, θ) = 0 for ψ ≥ ψu. We

have confirmed the second order scaling of the error with respect to grid size, e ∼ O(N−2),

and the expected scaling of the critical island width ∆w ∼ (κ⊥/κ‖)
1/4. Temperature iso-

contours are shown in Fig.1 for the case κ⊥/κ‖ = 10−10, with N = 212.

3. Chaotic coordinate framework

There is a countable infinity of ghost-surfaces that may be selected: the optimal selection

is determined by the island widths and κ⊥/κ‖. (An island width is not well defined when

the separatrix becomes chaotic, but one could instead consider the resonance area [24].)

We distinguish three types of surface: (i) low-order surfaces; (ii) high-order surfaces where

p/q approximates a noble irrational; and (iii) high-order surfaces where p/q approximates

a boundary irrational (an irrational that lies close to a low order rational [25]). When κ⊥

is comparatively large, the fine scale structure of the field is overlooked and the low order

islands have the dominant effect on the solution: in this case, a selection of low-order

surfaces is suitable. As κ⊥ is decreased, the temperature flattens across the larger islands,

and the iso-contours will coincide with noble surfaces. As κ⊥ is further decreased, the

temperature adapts more closely to the separatrix structure of the island chains, and the

boundary surfaces become relevant. In Fig.1 is shown a selection of ghost-surfaces. The

ghost-surfaces bear a remarkable coincidence with level surfaces of the temperature: on

this scale, the ghost-surfaces and iso-contours are nearly indistinguishable.

For the irrational surfaces, minimizing periodic orbits that approximate the associated
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FIG. 1: Left: (Color) For θ < 0: The selected ghost curves (red lines) and cantori (black

square dots). For θ > 0: Poincaré plot (gray dots), ghost curves (red lines) and the

temperature contours (black lines) for κ‖/κ⊥ = 1010. Right: Temperature profile along

line θ = 0.

cantori are shown. For the super-critical cantori the dots cluster together [26] and large

gaps emerge; however, the agreement between the super-critical ghost-surfaces (eg. the

top four surfaces in Fig.1) and the iso-contours is excellent. The temperature profile

along the symmetry line θ = 0 reveals the structure of the solution: across the larger

islands (rational zones) the temperature flattens, and across the cantori and small islands

(irrational zones) temperature gradients are supported.

Given an optimal selection of ghost-surfaces, labeled by s, the temperature may be written

in chaotic coordinates as T = To(s) + δT (s, θ, φ), where To(s) is generally a smoothed

devil’s staircase (flat across rationals with gradients on irrationals; see for example the

profile in Fig.1), and δT is small compared to To for small κ⊥/κ‖. Such an expression

serves as the basis for simplified theoretical and numerical descriptions of heat transport

in chaotic fields.
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