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The magnetic fields of stellarators and, in general, all not strictly

axisymmetric toroidal fusion devices exhibit magnetic islands. They
strongly influence the confinement properties of a fusion plasma and
are exploited in divertor design. So, the existence and the structure of
the magnetic islands are an important issue in configuration design.
Codes that determine finite-plasma-f stellarator equilibria while fully
accounting for their island structures exist (HINT [1], PIES [2]) and
have been applied to the NCSX [3] and W7-X [4] stellarators. In the

NCSX standard high-f scenario low-order rotational-transform val-

ues exist inside the plasma [5]. Figure 1 shows a poloidal cut of an
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NCSX case at () = 4% with 0 < 6 < & and the normalized radius Y
r < 1 of the PIES background coordinates. Several 3/m and 6/m is- Figure 1: PIES: NCSX at
lands can be seen, e.g. 3/5 at r ~ 0.75 and 3/6 at r ~ 0.6 in the (B)~4%.

3-periodic device.

For the W7-X stellarator the situation is differ-
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ent: In the standard high-f3 case no low-order ra-

tionals exist inside the plasma [6]. However, in the
W7-X configuration space a case exists with rota-
tional transform 1 = 5/6 inside the plasma at high
plasma-f3, as has been computationally demon-
strated (see Fig. 2). The PIES code has been used to
compute a free boundary equilibrium at () = 5%.
In MFBE calculations preceding the PIES computa-

tion, a configuration of coil currents similar to one

previously successful at f = 4% [6] was selected.

Figure 2: PIES for W7-X at (B) ~ 5%. This configuration employs the auxiliary coils, en-



ergised so as to maximise the plasma volume by shifting the magnetic axis inward and adjusting
the 1 profile. The equilibrium found in the subsequent PIES analysis exhibits a low order reso-
nance (5/6) inside the confinement region (see Fig. 2). The plasma volume is reduced to ~ 15m?
at this 3. The rotational transform ranges between 5/6 and 5/5 in the vacuum field, it decreases
with increasing plasma-f3.

An alternative approach to the

assessment of magnetic islands in 0.0z R
finite-f stellarator equilibria has %f E E
been developed with the method % 0.01~ 7
of perturbed equilibria [7]. Since g; : R i
a perturbed equilibrium repre- :_55 oh if*xﬁ;g;::;;;:_-_--;;;\‘gi

sents a small deviation from an % E E
equilibrium ideal MHD stability = 0011 , , , | . ! ! .
theory and, hence, ideal MHD ’ normalized(?[groidal flux s :

stability codes, e.g. the CAS3D Figure 3: CAS3D results for a W7-X case at () = 5%.
code [8], can be used to determine

a perturbed equilibrium. Discontinuities of the normal displacement at rational surfaces indicate
surface currents which are used to model islands. The strength of such a surface current can be
used to estimate the corresponding island width. The augmented CAS3D code was applied to
equilibria neighbouring the cases of Figs. 1 and 2. A first result for W7-X is shown in Fig. 3 for
a case with the rational rotational transform, 1 = 5/6, at approximately half of the total enclosed
toroidal flux. The CAS3D analysis predicts an island width of ~ 0.034m which is comparable
to the PIES code finding.
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