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Summary The calculation of three-dimensional magnetohydrodynamic (MHD) toroidal plasma equilibria is a challenging one concep-
tually because of the problems of Hamiltonian field-line chaos and singular currents. Combined with the need to achieve high accuracy
for plasma stability calculations, this makes the problem very difficult, but important for advanced fusion experiments. A new approach
based on multiple relaxed regions separated by ideal-MHD toroidal barrier tori is presented.

INTRODUCTION

It is standard practice to analyze the equilibrium and stability of plasma confinement designs for fusion energy experiments
using magnetohydrodynamics (MHD) as a first approximation, either with zero viscosity and resistivity (ideal MHD)
or with arbitrarily small resistivity to allow magnetic reconnection (resistive MHD). In axisymmetric systems, such as
tokamaks (when discrete coil effects are ignored), where the magnetic field B(r) forms an integrable Hamiltonian system,
equilibria with arbitrary pressure profiles exist. These can be calculated straightforwardly and then tested for stability by
normal-mode analysis.
However, machines of the stellarator type, such as the H-1NF helical-magnetic-axis (heliac) device at the Australian
National University or the NCSX experiment being built at Princeton (see Fig. 1), are intrinsically nonaxisymmetric.
For these the magnetic field is generically nonintegrable and always has magnetic islands associated with rational values
of the rotational transform (winding number of the field lines), with chaotic regions in their separatrix regions. This
makes problematical the strict mathematical existence of equilibria [1] but, in designing NCSX, physicists have been able
to compute (at least approximately and with considerable effort) configurations with finite plasma pressure β (ratio of
kinetic to magnetic pressure). These have been optimized to reduce island widths [2] and thus increase the measure of
“flux surfaces” [invariant tori on which field lines stay forever, the existence of which, for sufficiently irrational rotational
transforms, is supported by Kolmogorov–Arnol’d–Moser (KAM) theory]. Little has been done, however, on the stability
question in the presence of islands and chaotic regions.

Figure 1. Left: A schematic showing the NCSX plasma (red), and the toroidal conductors (green) in which external currents producing
the magnetic field flow. Right: Magnetic-field Poincaré plots for a β = 4.1% plasma before (lower) and after (upper) optimization of
flux surfaces using external coils [2].

The progress described above gives reason to believe that a well-posed mathematical formulation of the MHD equilibrium
problem should be possible, and one hopes this will improve the calculational efficiency and also allow meaningful
discussion of stability. In fact we [3] have recently proposed a variational approach that holds promise of achieving this.
This paper briefly introduces the idea and discusses progress on implementing it.

PARTIALLY CONSTRAINED ENERGY MINIMIZATION

The variational principle on which we base our approach lies between that of Kruskal & Kulsrud [4]—minimization of
total energy W ≡

∫
[B2/2 + p/(γ − 1)] (where p is plasma pressure, γ the ratio of specific heats) under the uncountable



infinity of constraints provided by applying ideal MHD within each fluid element—and the relaxed MHD of Woltjer [5]
and Taylor [6]—minimization of W holding only the two global toroidal and poloidal magnetic fluxes, and the single
global ideal-MHD helicity invariant K ≡

∫
A · B, constant. We extend the latter approach by dividing the plasma into

subregions separated by infinitely thin ideal-MHD toroidal barriers between which Woltjer–Taylor relaxation is assumed.
Expansion of W up to second order in the amplitude of fluid displacements provides both a generalized force from the first
variation and a Jacobian operator from the second variation, thus allowing an accelerated steepest descent minimization
and also providing stability information from the eigenvalues of the Jacobian operator.

FORCE BALANCE ACROSS IDEAL-MHD BARRIERS

The first variation of the positions of the ideal barriers yields the requirement that the total pressure, B2/2 + p, be
continuous across the ideal-MHD barriers. This gives rise to a Hamilton–Jacobi problem that relates the existence of the
barriers to KAM theory [7, 8].

STABILITY

If the second variation is positive definite, δ2W > 0, then an equilibrium configuration (δW = 0) is stable against the
wide class of variations allowed in relaxed MHD, which includes ideal MHD and resistive MHD. We recast this as a
generalized eigenvalue problem by defining a Lagrangian L = δ2W −λN , with N a positive definite normalization. The
stability condition is λ ≥ 0 for all eigenvalues. Using a normalization concentrated on the ideal-MHD barrier interfaces,
the perturbed field in plasma regions is computed to be Beltrami (∇× B = µB), with the same Lagrange multiplier µ as
the equilibrium field. The interface equations produce an eigenvalue problem.
In cylindrical geometry with axial periodicity, the displacement is Fourier decomposed, and displacements of the form
ei(mθ+κz) sought, where m is the poloidal mode number, and κ the axial wave number. Hole et al. [9] have studied
the stability of these configurations as a function of mode number and number of ideal barriers, and bench-marked these
results to earlier single interface studies. Hole et al. also revealed a paradox: the stability of a two-interface plasma
with continuous rotational transform in the limit of barrier separation approaching zero differs from the stability of a
single-interface barrier configuration with the same internal and vacuum rotational transform profile.
The discrepancy has been resolved by Mills [10], who studied the stability of configurations in which the inter-barrier
region was ideal. In this case, the ideal stability of resonances in the inter-barrier region was handled explicitly, as
opposed to the Woltjer–Taylor relaxed treatment, in which resonances do not explicitly feature. The ideal inter-barrier
plasmas studies showed similar stability to the single interface configuration. Mills concluded it is the different treatment
of resonances, which are implicit in Woltjer–Taylor relaxed plasmas, but explicit when computing ideal MHD stability that
is responsible for reconciling the vanishing interface separation paradox. In more recent work, we have also shown that
the tearing mode stability of the plasmas is equivalent to the frustrated Woltjer–Taylor plasmas studied here. In ongoing
work, we are also studying whether quantization in the toroidal direction leaves a stable residue of configurations. If so,
these constrained minimum energy states may be related to internal transport barrier configurations, which are plasma
configurations with good confinement properties that form at sufficiently high heating power.
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