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Motivation

— heat transport is anisotropic: V -(K‘H bb-VT + K‘J_VJ_T) =0 with « /KH=10'10

— if nested flux surfaces exist, then 7' =T (¢ ), where y labels invariant surfaces

— if field is chaotic, goal is to adapt coordinates so that 7 = T'(s),
— we need a fast, robust, simple construction of chaotic coordinates;
— this talk will show that, despite their different definitions,

ghost-surfaces and quadratic-flux minimizing surfaces are almost identical

— the "easy method" of constructing the "best surfaces" may be possible!



Part 1 Motivation

1) field line transport in chaos is restricted by cantori
2) construct chaotic-coordinates bit fitting coordinate surfaces to cantori

3) chaotic-coordinates allow simple solution for anisotropic transport



Field-line transport 1s restricted by irrational field-lines

—> the irrational KAM surfaces disintegrate into invariant irrational sets = cantori,
which continue to restrict field-line transport even after the onset of chaos.
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— KAM surfaces stop radial field-line transport

— broken KAM surfaces =cantori
do not stop, but do slow down
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— cantori are approximated by high-order, — cantori _ | .-
unstable, periodic-orbits, (Dlack dOL) ey | ===, i,

— chaotic-coordinates are fit to the cantori,
we need to (i) locate the cantori
(ii) fill-in-the-gaps to make surfaces
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Anisotropic transport is solved by chaotic-coordinates.

—  ghost-surfaces for high-order periodic orbits ‘‘fill-in-the-gaps” in the irrational cantori,
—  ghost-surfaces and isotherms are almost indistinguishable; suggests T=1(s);

e heat transport in plasmas is strongly anisotropic
K‘HVﬁT+KJ_ViT =S, (S 1s source)
K| / K| ~ 107'%, solved numerically on grid 2'* x 2"

— parallel diffusion dominates perpendicular diffusion

e structure of temperature is dominated by the
structure of the magnetic field;

— structure of coordinates = structure of field

e temperature adapts to almost-invariant surfaces;

we obtain 7' = T'(s), where s labels ghost surfaces;
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Hudson & Breslau, Phys. Rev. Lett. 100, 095001 (2008)



Chaotic-coordinates simplifies temperature profile

— ghost-surfaces can be used as radial coordinate surfaces — chaotic-coordinates (s, 6, ¢)

: const.
e From 0=-_ V.q av =2 q-n do assume T = T(s) to derive 1"'=
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e in the "ideal limit" « L 0, 7' — oo on irrational KAM surfaces where Q = 0;

e NON-ZEro K| ensures T'(s) 1s smooth, 7' peaks on minimal-Q surfaces (noble cantori).
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Part 2 Almost invariant surfaces

1) two classes of almost-invariant surfaces have been suggested :

a) quadratic-flux minimizing (QFMin) surfaces, and
b) ghost-surfaces

2) an efficient, robust algorithm for constructing QFMin surfaces exists,
but ghost-surfaces have attractive mathematical properties

(e.g. guaranteed non-intersection at strong-chaos, . . .)

3) if the different classes of surfaces are in fact the same, improved
numerical methods become available



Quadratic-flux minimizing (QFMin) surfaces are a
natural extension of flux surfaces. defined for chaotic fields

« toroidal coordinates (gu,@,é’ ), given magnetic field B =V x(gy VO-y V¢ ), where y = y(v,0,¢),
 a toroidal surface may be described w=P(6,¢), normal N =(e, + Pye )x (e c +Pe ), v =BeN
- tangential dynamics described according to

angle dynamics from field, 0 =B / B¢ , and radial dynamics constrained to lie on surfacey = Pgé? + F,
1.e. pseudo-field B, =B—-v VOxVJ

1 2 Note — coordinate de, :
° 1 = . pendence,
quadratlc flux P> 2 j I( B-N ) dgdé,’ extra Jacobian factor appears

» allowing the surface to vary to extremize ¢,, obtain Euler-Lagrange equation B, Vv =0

pseudo-field-lines determined by following pseudo-field

1) normal-field, v, constant along pseudo-field lines;
2) rational surface = family of periodic pseudo-field lines,

3) o.d.e. integration suitable for low-order periodic surfaces;

Dewar & Meiss, Physica D, 57, 476 (1992); Dewar, Hudson & Price, Phys. Lett. A 194, 49 (1994); Dewar & Khorev, Physica D, 85, 66 (1995);
Hudson & Dewar, J. Plasma Phys., 56, 361 (1996); Hudson & Dewar, Phys. Lett. A (2009)



Alternative construction of QFMin surfaces employs
constrained action-integral techniques
« Magnetic field-lines are curves, C: 0 = 0(¢), y=w (<), that extremize the action S= I A.-dr
C

— Euler-Lagrange equation Bxdr =0
— variational integration faster, robust to chaos; suited for finding high-order periodic orbits in chaos;
— for numerical implementation: discretize infinite-dimensional curves, S=S(6,,6,,0,,. . . ,0,)

enforce periodicity constraint 8y, = 60, + 27 p, § = +27q

find zero of action-gradient vector, 8S/06;=0, using Hessian 0’S / 8291.].,

« A constrained variational principle for pseudo-field-lines § =j A-dr—v (I OV -dr— a)
C

recall, to find minimum of /'(x), subject to constraint g(x) = g,, minimize F'(x,4) = f(x)- 4 [g(x) - go]

« Buler-Lagrange equation gives pseudo-field B, =B-v VOxVJ

1 increasing area constraint gives family of periodic pseudo-curves

Lagrangian variational methods suitable for high-order
periodic orbits (q ~ 10,000) in strongly chaotic fields;

2)  High-order periodic orbits approximate KAM surfaces and

broken KAM surfaces (cantori);

area = Jﬁd(
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Ghost-surfaces constructed via action-gradient flow
between the stable & unstable periodic orbits.

C. Golg¢, J. Differ. Equations 97, 140 1992., R. S. MacKay and M. R. Muldoon, Phys. Lett. A 178, 245, 1993.

e At the minimax (stable) periodic orbit, the eigenvector of the Hessian, 8°S / 6 0,

with negative eigenvalue indicates the direction in which the action integral decreases.

e Pushing trial curve from minimax (stable) p /g orbit down action-gradient flow to

minimizing (unstable) p /g orbit defines ghost - surfaces,

e Ghost-surfaces may be thought of as rational coordinate surfaces that pass through island chains.
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Ghost-surfaces are almost identical to QOFMin surfaces!

I!Ghost surfaces are defined by action-gradient flow,
I OFMin surfaces defined by minimizing quadratic-flux;,
— no obvious reason why these different definitions should give the same surfaces

e Numerical evidence suggests ghost-surfaces

and QFMin surfaces are almost the same;

e confirmed tolst-order using perturbation theory;

—> to higher order, need to exploit coordinate dependence
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Hudson & Dewar, Phys. Lett. A, 2009.



Ghost-surfaces are almost identical to OFMin surfaces?

I!Ghost surfaces are defined by action-gradient flow,
I OFMin surfaces defined by minimizing quadratic-flux;,
— no obvious reason why these different definitions should give the same surfaces

e For stronger chaos, ghost-surfaces

and QFMin surfaces are no longer the same; ==,

¢ hopefully, can re-define QFMin surfaces so
as to agree with ghost-surfaces

yet keep efficient, robust numerical algorithm = L B

Hudson & Dewar, Phys. Lett. A, 2009.




Summary

— 1n chaotic fields, anisotropic heat transport is restricted by irrational field-lines = cantori;

—> ghost-surfaces are closely related to quadratic-flux minimizing surfaces:

— a simple numerical construction has been introduced;

—> the temperature takes the form 7=7(s), where s labels the chaotic coordinate surfaces;

— an expression for the temperature gradient in chaotic fields is derived;
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