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 toroidal magnetic fields are equivalent to 1  dim. Hamiltonian flows, which 

    (in the absence of symmetry) are generally chaotic.

           Motivation
i

i for perfectly integrable systems, action-angle coordinates can be constructed
    by adapting the coordinates to the invariant surfaces.

 for nearly-integrable systems, the KAM theorem suggests that 
 
i

(i.e. phase space   encounter a catastrophic collapse, but rather  disintegrates)

    action-angle coordinates will be useful.
    

 we need to construct -invariant surface

does not slowly

approximate

almosti s to act as 
    coordinate surfaces in regions of chaos.

 This talk will highlight the successes of constructing almost-invariant surfaces → ←



Quadratic-flux minimizing (QFMin) surfaces are a 
natural extension of flux surfaces, defined for chaotic fields

Dewar & Meiss, Physica

 

D, 57, 476 (1992); Dewar, Hudson & Price, Phys. Lett. A 194, 49 (1994); Dewar & Khorev, Physica

 

D, 85, 66 (1995);
Hudson & Dewar, J. Plasma Phys., 56, 361 (1996); Hudson & Dewar, Phys. Lett. A (2009)
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 toroidal coordinates , , ,  given magnetic field   ,  where ( , , ),  

 a toroidal surface may be described = ( , ),   normal , 
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i 2 vary to extremize ,  obtain Euler-Lagrange equation   0
  -field-lines determined by following -field pseudo pseudo

νϕ ν∇ =B i

1) normal-field, ν, constant along pseudo-field lines;
2) rational surface = family of periodic pseudo-field lines;
3) o.d.e. integration suitable for low-order periodic surfaces;

Note → coordinate dependence;
extra Jacobian

 

factor appears



A family of low-order QFMin surfaces defines the 
nearest,

 
smooth, nearby-integrable field

0Hamiltonian is efficiently written ( ) ( ) cos( ), where  are small;

determination of resonant perturbations allows efficient island healing techniques;
mn mnm nχ χ ψ χ ψ θ ζ χ= + −∑
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fit “coordinate”
QFMin-surfaces 
through islands

island-phase control in H1 stellarator
Hudson & Dewar, Phys. Lett. A 226,85 (1997)

island-healing in NCSX
Hudson et al., Phys. Rev. Lett. 89,275003 (2002)

“healed”

 

equilibrium

original equilibrium

0If an arbitrary field  is given, how do we best decompose = ?δ+B B B B



Field-line transport is restricted by irrational field-lines

Poincaré
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→ the irrational KAM surfaces disintegrate into invariant irrational sets ≡

 

cantori,
which continue to restrict field-line transport even after the onset of chaos.

510  iterations →

510  iterations →

“noble”
cantori
(black dots)

(delete middle third)KAM surface

cantor set

complete barrier

partial barrier

→ KAM surfaces stop radial field-line transport

→ broken KAM surfaces ≡cantori
do not stop, but do slow down
radial field-line transport

→ cantori

 

are approximated by high-order, 
unstable, periodic-orbits; 

→ chaotic-coordinates are fit to the cantori, 
we need to (i) locate the cantori

(ii) fill-in-the-gaps to make surfaces

gapgap



Alternative construction of QFMin surfaces employs 
constrained action-integral techniques

 Magnetic field-lines are curves, : ( ), = ( ), that extremize the action =

 Euler-Lagrange equation 0
 variational integration faster, robust to chaos; suited for finding high-order 
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                                                              enforce periodicit

periodic orbits in chaos;
 for numerical implementation: , , ,. . . , Nθ θ θ θ→
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 A constrained variational principle 

 =0, ij

N N

i

p qθ

θ θ

θ π ζ ζ π

∂ ∂ ∂ ∂

= + = +

i ( )
0 0recall, to find minimum of ( ),  subject to constraint ( ) ,  minimize ( , ) ( ) -  [ ( ) -

for pseudo-field-lines  =  

 ]

 Euler-Lagrange equation gives pseudo-field  
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increasing area constraint gives family of periodic pseudo-curves

1)

 

Lagrangian

 

variational

 

methods suitable for high-order 
periodic orbits (q ~ 10,000) in strongly chaotic fields;

2)

 

High-order periodic orbits approximate KAM surfaces and 
broken KAM surfaces (cantori);



Ghost-surfaces constructed via action-gradient flow 
between the stable & unstable periodic orbits. 

C. Golé, J. Differ. Equations 97, 140 1992., R. S. MacKay and M. R. Muldoon, Phys. Lett. A 178, 245, 1993.

2 2 At the minimax (stable) periodic orbit, the eigenvector of the Hessian, S / , 

   with negative eigenvalue indicates the direction in which the action integral decreases.

 Pushing trial curve 

ijθ• ∂ ∂

•

 Ghost-surfaces 

from minimax (stable) /  orbit down action-gradient flow to 
   minimizing (unstable) /  orbit defines - ,

may be thought of as rational coordinate surfaces that pass thro

p q
p q ghost surfaces

•

 shown to have desirable properties, such as non-intersection, . . .
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Ghost-surfaces are almost identical to QFMin surfaces. 

Hudson & Dewar, Phys. Lett. A, 2009.

to higher order, need to exploit coordinate dependence 

     of

 Numerical evidence suggests ghost-surfaces 
   and QFMin surfaces are  the same;

 confirmed to1st-order using perturbation theory;

almost
•

•
→

 QFMin surfaces and ghost surfaces . . .

 opens possibility of using fast, robust
   construction of  almost-invariant surfaces
   & chaotic coordinates

unified
•

thin solid line      = ghost surfaces
thick dashed line = QFMin

 

surfaces

red dots=Poincaré

 

plot

‼Ghost surfaces are defined by action-gradient flow;
‼

 

QFMin

 

surfaces defined by minimizing quadratic-flux;
→ no obvious reason why these different definitions should give the same surfaces



Anisotropic transport is solved by chaotic-coordinates. 

→

 

ghost-surfaces for high-order periodic orbits “fill-in-the-gaps”

 

in the irrational cantori;
→

 

ghost-surfaces and isotherms are almost indistinguishable; suggests T=T(s);
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 parallel diffusion dominates perpendicular diffusio

solved numerically on grid 2 2

 heat transport in plasmas is strongly anisotropic

  ,                 (  is source)

  10 ,  
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 structure of coordinates  structure of field

 structure of temperature is dominated by the 
   structure of the magnetic field;

 temperature adapts to almost-invariant surfaces;
   we obtain ( ),T T s

→ ≡

•

•
=  where  labels ghost surfaces;s

Hudson & Breslau, Phys. Rev. Lett. 100, 095001 (2008)



Chaotic-coordinates simplifies temperature profile
→ ghost-surfaces can be used as radial coordinate surfaces → chaotic-coordinates (s,θ,φ)
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 on irrational KAM surfaces where 0;

non-zero  ensures ( ) is smooth, '  peaks on minimal-  surfaces (noble cantori).  T s Tκ Ω•
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Conclusions

→ constructing almost-invariant surfaces is useful for understanding chaotic systems
→ e.g. for constructing nearby integrable

 

fields, understanding transport through chaos

→ chaotic magnetic coordinates show the promise of (approximately)
extending the simplicity of action-angle coordinates to chaotic flows
→e.g. the temperature becomes a surface function T=T(s) 

→ Ghost-surfaces have desirable properties (non-intersecting . . ), 
and are very similar to quadratic-flux minimzing surfaces
→ but QFMin

 

surfaces are much easier to construct
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