Organizing Chaos Via Constructing Almost Invariant Surfaces

Dr. Stuart Hudson and Prof. R.L. Dewar

1st Dewar Symposium on (Equilibrium,) Stability and Nonlinear dynamics of plasmas, 31 October 2009, Atlanta, GA, USA

Motivation

- toroidal magnetic fields are equivalent to $1\frac{1}{2}$ dim. Hamiltonian flows, which (in the absence of symmetry) are generally chaotic.
- for perfectly integrable systems, action-angle coordinates can be constructed by adapting the coordinates to the invariant surfaces.
- for nearly-integrable systems, the KAM theorem suggests that approximate action-angle coordinates will be useful.
 (i.e. phase space *does not* encounter a catastrophic collapse, but rather *slowly* disintegrates)
- we need to construct *almost*-invariant surfaces to act as coordinate surfaces in regions of chaos.

ightarrow This talk will highlight the successes of constructing almost-invariant surfaces ightarrow

<u>Quadratic-flux minimizing (QFMin) surfaces are a</u> <u>natural extension of flux surfaces, defined for chaotic fields</u>

- toroidal coordinates (ψ, θ, ζ) , given magnetic field $\mathbf{B} = \nabla \times (\psi \nabla \theta \chi \nabla \zeta)$, where $\chi = \chi(\psi, \theta, \zeta)$,
- a toroidal surface may be described $\psi = P(\theta, \zeta)$, normal $\mathbf{N} = (\mathbf{e}_{\theta} + P_{\theta}\mathbf{e}_s) \times (\mathbf{e}_{\zeta} + P_{\zeta}\mathbf{e}_s)$, $\nu = \mathbf{B} \cdot \mathbf{N}$
- tangential dynamics described according to angle dynamics from field, θ = B^θ/B^ζ, and radial dynamics constrained to lie on surface ψ = P_θθ + P_ζ
 i.e. *pseudo-field* B_ν = B − ν ∇θ×∇ζ

• quadratic flux
$$\varphi_2 = \frac{1}{2} \iint (\mathbf{B} \cdot \mathbf{N})^2 d\theta d\zeta$$
,
Note \rightarrow *coordinate dependence;*
extra Jacobian factor appears

• allowing the surface to vary to extremize φ_2 , obtain Euler-Lagrange equation $\mathbf{B}_{\nu} \cdot \nabla \nu = 0$ *pseudo*-field-lines determined by following *pseudo*-field

normal-field, v, constant along pseudo-field lines;
 rational surface = family of periodic pseudo-field lines;
 o.d.e. integration suitable for low-order periodic surfaces;

Dewar & Meiss, Physica D, 57, 476 (1992); Dewar, Hudson & Price, Phys. Lett. A 194, 49 (1994); Dewar & Khorev, Physica D, 85, 66 (1995); Hudson & Dewar, J. Plasma Phys., 56, 361 (1996); Hudson & Dewar, Phys. Lett. A (2009)

<u>A family of low-order QFMin surfaces defines the</u> <u>nearest</u>, smooth, nearby-integrable field

If an arbitrary field **B** is given, how do we best decompose $\mathbf{B}=\mathbf{B}_0 + \delta \mathbf{B}$?

Field-line transport is restricted by irrational field-lines

 \rightarrow the irrational KAM surfaces disintegrate into invariant irrational sets \equiv cantori, which continue to restrict field-line transport even after the onset of chaos.

 \leftarrow poloidal angle \rightarrow

<u>Alternative construction of QFMin surfaces employs</u> <u>constrained action-integral techniques</u>

• Magnetic field-lines are curves, $C: \theta = \theta(\zeta), \psi = \psi(\zeta)$, that extremize the action $S = \int_{\Omega} \mathbf{A} \cdot d\mathbf{r}$

 \rightarrow Euler-Lagrange equation $\mathbf{B} \times \delta \mathbf{r} = 0$

area = $\theta d\zeta$

ζ

θ

- \rightarrow variational integration faster, robust to chaos; suited for finding high-order periodic orbits in chaos;
- \rightarrow for numerical implementation: discretize infinite-dimensional curves, S=S($\theta_0, \theta_1, \theta_2, \dots, \theta_N$)

enforce periodicity constraint $\theta_N = \theta_0 + 2\pi p$, $\zeta_N = \zeta_0 + 2\pi q$

find zero of action-gradient vector, $\partial S / \partial \theta_i = 0$, using Hessian $\partial^2 S / \partial^2 \theta_{ij}$,

- A constrained variational principle for pseudo-field-lines $S = \int_C \mathbf{A} \cdot d\mathbf{r} v \left(\int \theta \nabla \zeta \cdot d\mathbf{r} a \right)$ recall, to find minimum of f(x), subject to constraint $g(x) = g_0$, minimize $F(x, \lambda) = f(x) \cdot \lambda [g(x) \cdot g_0]$
- Euler-Lagrange equation gives pseudo-field $\mathbf{B}_{\nu} \equiv \mathbf{B} \nu \nabla \theta \times \nabla \zeta$

f increasing area constraint gives <i>family of periodic pseudo-curves

- 1) Lagrangian variational methods suitable for high-order periodic orbits ($q \sim 10,000$) in strongly chaotic fields;
- 2) High-order periodic orbits approximate KAM surfaces and broken KAM surfaces (cantori);

<u>Ghost-surfaces constructed via action-gradient flow</u> <u>between the stable & unstable periodic orbits.</u>

C. Golé, J. Differ. Equations 97, 140 1992., R. S. MacKay and M. R. Muldoon, Phys. Lett. A 178, 245, 1993.

- At the minimax (stable) periodic orbit, the eigenvector of the Hessian, $\partial^2 S / \partial^2 \theta_{ij}$, with negative eigenvalue indicates the direction in which the action integral decreases.
- Pushing trial curve from minimax (stable) *p* / *q* orbit down action-gradient flow to minimizing (unstable) *p* / *q* orbit defines *ghost surfaces*,
- Ghost-surfaces may be thought of as rational coordinate surfaces that pass through island chains.
 → shown to have desirable properties, such as non-intersection, . . .

Ghost-surfaces are almost identical to QFMin surfaces.

!!Ghost surfaces are defined by action-gradient flow; !! QFMin surfaces defined by minimizing quadratic-flux; \rightarrow no obvious reason why these different definitions should give the same surfaces

- Numerical evidence suggests ghost-surfaces and QFMin surfaces are <u>almost</u> the same;
- confirmed to1st-order using perturbation theory;
 → to higher order, need to exploit coordinate dependence of QFMin surfaces and ghost surfaces . . .
- opens possibility of using fast, robust construction of *unified* almost-invariant surfaces & chaotic coordinates

Anisotropic transport is solved by chaotic-coordinates.

→ ghost-surfaces for high-order periodic orbits "fill-in-the-gaps" in the irrational cantori; → ghost-surfaces and isotherms are almost indistinguishable; suggests T=T(s);

- heat transport in plasmas is strongly anisotropic $\kappa_{\parallel} \nabla_{\parallel}^2 T + \kappa_{\perp} \nabla_{\perp}^2 T = S$, (*S* is source) $\kappa_{\perp} / \kappa_{\parallel} \sim 10^{-10}$, solved numerically on grid $2^{12} \times 2^{12}$
- \rightarrow parallel diffusion dominates perpendicular diffusion
- structure of temperature is dominated by the structure of the magnetic field;
- \rightarrow structure of coordinates = structure of field
- temperature adapts to almost-invariant surfaces; we obtain T = T(s), where *s* labels ghost surfaces;

Chaotic-coordinates simplifies temperature profile

 \rightarrow ghost-surfaces can be used as radial coordinate surfaces \rightarrow chaotic-coordinates (s, θ , ϕ)

• From
$$0 = \frac{\partial}{\partial s} \int_{V} \nabla \cdot \mathbf{q} \, dV = \frac{\partial}{\partial s} \int_{\partial V} \mathbf{q} \cdot \mathbf{n} \, d\sigma$$
 assume $T = T(s)$ to derive $T' = \frac{const.}{\kappa_{\parallel} \Omega + \kappa_{\perp} G}$
for quadratic-flux $\Omega = \int d\sigma g^{ss} (B_n / B)^2$, and metric $G = \int d\sigma g^{ss}$, where $g^{ss} = \nabla s \cdot \nabla s$, $B_n = \mathbf{B} \cdot \nabla s / |\nabla s|$
• in the "ideal limit" $\kappa_{\perp} \to 0$, $T' \to \infty$ on irrational KAM surfaces where $\Omega = 0$;

• non-zero κ_{\perp} ensures T(s) is smooth, T' peaks on minimal- Ω surfaces (noble cantori).

Conclusions

- \rightarrow constructing almost-invariant surfaces is useful for understanding chaotic systems \rightarrow e.g. for constructing nearby integrable fields, understanding transport through chaos
- \rightarrow chaotic magnetic coordinates show the promise of (approximately) extending the simplicity of action-angle coordinates to chaotic flows $\rightarrow e.g.$ the temperature becomes a surface function T=T(s)
- → Ghost-surfaces have desirable properties (non-intersecting . .), and are very similar to quadratic-flux minimzing surfaces
 → but QFMin surfaces are much easier to construct