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Error fields, 3D effects, . . create chaotic fields.

Heat transport is solved numerically:

  0 with / =10 .

 
Isotherms coincide with cantori,
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dinates, based on - , 
     solves the temperature profile in a chaotic field.

ghost surfaces

eg. M3D simulation of CDX-U



Field-line transport is restricted by irrational field-lines
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→ the irrational KAM surfaces disintegrate into invariant irrational sets ≡

 

cantori,
which continue to restrict field-line transport even after the onset of chaos.

510  iterations →

510  iterations →

“noble”
cantori
(black dots)

(delete middle third)KAM surface

cantor set

complete barrier

partial barrier

→ KAM surfaces stop
radial field-line transport

→ broken KAM surfaces ≡cantori
do not stop, but do slow down
radial field-line transport



Cantori
 

are approximated by high-order periodic orbits; 

→ high-order (minimizing) periodic orbits are located using variational

 

methods;

2where      and    ( , , )= cos( )

 Magnetic field-lines,  , are stationary curves  of the action integral = ,    

  / 2 ( ) .

 Setting 0 gives /  ( , , ) and 
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 A piecewise linear, ( ) = + ( - ) / ,  trial curve 
  allows analytic evaluation of the action integral, ( , ,  . . .) !

 To find ( , ) periodic curves, use Newton's method 
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to find / 0 !
   with constraint 2 ,  = +2 . 

 Two types of periodic orbit:    : stable, action-minimax
                                                   : unstable, action-minimizi
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Ghost-surfaces constructed via action-gradient flow
 between the stable & unstable periodic orbits. 

C. Golé, J. Differ. Equations 97, 140 1992., R. S. MacKay and M. R. Muldoon, Phys. Lett. A 178, 245, 1993.

2 2 At the minimax (stable) periodic orbit, the eigenvector of the Hessian, S / , 

   with negative eigenvalue indicates the direction in which the action integral decreases.

 Pushing trial curve 
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 Ghost-surfaces 

from minimax (stable) /  orbit down action-gradient flow to 
   minimizing (unstable) /  orbit defines - ,

may be thought of as rational coordinate surfaces that pass thro

p q
p q ghost surfaces

• ugh island chains.
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small near integrable
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Ghost-surfaces are almost identical to 
quadratic-flux-minimizing surfaces. 
Dewar, Hudson & Price, Phys. Lett. A, 1994; Hudson & Dewar, Phys. Lett. A, 2009.
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 Quadratic-flux-minimizing surfaces, ,
1minimize 
2

where  is normal to the surface.

 A constrained variational principle for
rational pseudo-orbits was found
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idence suggests
ghost-surfaces and QFMin surfaces 
are the same; confirmed to1st-order;

Thin solid line = ghost surfaces
Thick dashed line = QFMin

 

surface

Red dots shows Poincaré

 
plot of chaotic field

*constraint of fixed “area”

 

a;
*ν

 

is Lagrange multiplier     ;
*numerically is much faster ;
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Error vs

 

grid resolution

Numerical method for solving anisotropic heat transport
 exploits field-line coordinates
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heat flux 0,  where  ;  strongly anisotropic ;

parallel relaxation: use field-alligned coordinates ,  so 

perpendicular relaxation: approximated by 
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solid lines = isotherms
grey dots = Poincaré

 

plot
solid lines = isotherms

grey dots = Poincaré

 

plot

4-th order differencing gives
4-th order convergence 



Steady state temperature is solved numerically;
 isotherms coincide with ghost-surfaces. 

→ ghost-surface for high-order periodic orbits “fill in the gaps”

 

in the irrational cantori;

→

 

ghost-surfaces and isotherms are almost indistinguishable; suggests T=T(s);
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temperature flattens across 
large islands

no KAM surfaces



Chaotic-coordinates simplifies temperature profile
→ ghost-surfaces can be used as radial coordinate surfaces → chaotic-coordinates (s,θ,φ)

2quadratic-flux   for ,  and metric G ,  where ,  B / | 
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 on irrational KAM surfaces where 0;

non-zero  ensures ( ) is smooth, '  peaks on minimal-  surfaces (noble cantori).  T s Tκ Ω•
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Summary
→ in chaotic fields, anisotropic heat transport is restricted

 

by irrational field-lines ≡

 

cantori

→ ghost-surfaces are closely related to quadratic-flux minimizing surfaces, 
and a simple numerical construction has been introduced; 

→ the temperature takes the form T=T(s),

 

where s labels the chaotic coordinate surfaces,
and an expression for the temperature gradient is derived.

Future Work
→ For a practical implementation of this theory, eg. in MHD codes, the following points 

must be addressed:
→ what is the best selection of rational p/q

 

ghost-surfaces for a given chaotic field, and 
→ how does the best selection of ghost-surfaces depend on κ┴

 

?
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→ interpolating a suitable selection of ghost-surfaces allows chaotic-magnetic-coordinates
to be constructed
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