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 The ideal MHD equilibrium equations, ,  
imply that pressure is constant along a field line, 0. 

 For chaotic fields, this means that the structure of the pressure 
cannot be resolve
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 To avoid these problems, we instead consider the pressure to be determined by
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 A numerical algorithm for solving this equation is being implemented 
in the HINT code.
→
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Part 1 : Review of Recent Work

In the following slides I will try to show that :

→ chaotic fields are not random; near critical fields most relevant;
→ some flux surfaces may still exist (KAM surfaces) that stop field line transport;
→ other structures exist which restrict field line transport  e.g. cantori;
→ ghost-surfaces are almost invariant surfaces = replacement KAM surfaces;
→ construct chaotic magnetic coordinates for chaotic fields;

→ for heat transport in chaotic fields, temperature becomes a surface function;
→ semi-analytic expression for temperature gradient can be derived;



For chaotic fields, field line transport is restricted by cantori
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→ the irrational KAM surfaces disintegrate into invariant irrational sets ≡

 

cantori,
which continue to restrict field line transport even after the onset of chaos.

510  iterations →

510  iterations →

“noble”
cantori
(black dots)

(delete middle third)KAM surface

cantor set

complete barrier

partial barrier

→ KAM surfaces stop
radial field line transport

→ broken KAM surfaces ≡cantori
do not stop, but do slow down
radial field line transport

Hudson, Phys. Rev. E., 2006



Cantori are approximated by high-order periodic orbits; 

→ high-order (minimizing) periodic orbits are located using variational

 

methods;

2where      and    ( , , )= cos( )

 Magnetic field lines,  , are stationary curves  of the action integral = ,    
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 A piecewise linear, ( )= +( - )/ ,  trial curve 
  allows analytic evaluation of the action integral, ( , ,  . . .) !
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 Two types of periodic orbit:    : stable, action-minimax
                                                   : unstable, action-minimizing
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Ghost-surfaces constructed via action-gradient flow 
between the stable & unstable periodic orbits. 

C. Golé, J. Differ. Equations 97, 140 1992., R. S. MacKay and M. R. Muldoon, Phys. Lett. A 178, 245, 1993.

2 2 At the minimax (stable) periodic orbit, the eigenvector of the Hessian, S / , 

   with negative eigenvalue indicates the direction in which the action integral decreases.

 Pushing trial curve 
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 Ghost-surfaces 

from minimax (stable) /  orbit down action-gradient flow to 
   minimizing (unstable) /  orbit defines - ,

may be thought of as rational coordinate surfaces that pass thro
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Steady state temperature is solved numerically; 
isotherms coincide with ghost-surfaces. 

→ ghost-surfaces “fill in the gaps”

 

in the irrational cantori; quasi-KAM surfaces for chaos!

→

 

ghost-surfaces and isotherms are almost indistinguishable;
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Hudson & Breslau, Phys. Rev. Lett., 2008

field line derivative



Chaotic-coordinates simplifies temperature profile
→ ghost-surfaces can be used as radial coordinate surfaces → chaotic-coordinates (s,θ,φ)
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 on irrational KAM surfaces where 0;
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Part 2 : Outline of work at NIFS

In the following slides I will try to show that:

for a chaotic field, the equation 0 has the solutions
(i) ' zero , or 
(ii) '  is discontinuous almost everywhere;

 discuss the modifications requi
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      (replace 0 with anisotropic pressure diffusion   )

 give some early results indicating numerical convergence for a toy magnetic field
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Chaotic Magnetic Fields are Fractal
KAM theorem: a finite measure of irrational flux surfaces will remain
 the rotational transform, , must be sufficiently irrational

   0,  2  . . , ,    

 KAM surfaces can support pres
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The HINT code seeks approximation 
to MHD equilibria
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Poincare plot Error vs grid resolution
Showing islands, chaos and pressure;                            error ~ h4

Numerical solution to anisotropic diffusion almost completed

→A field aligned grid is constructed by following field lines
→Similar to existing HINT algorithm for pressure relaxation but faster;

→A 4th-order finite-difference solution has been implemented (for a toy field)
→the expected convergence is obtained;



Conclusion

Chaotic magnetic fields have a fractal structure;
     * field line transport is not diffusive

The chaotic structure can be exploited
     * irrational cantori severely restrict radial field line trans

→

→
port

     * magnetic coordinates for chaotic fields can be constructed
     * the temperature becomes a surface function

If ignored, the chaotic structure causes problems for numerical algorithms
     * 
→

( )
the solution to 0 is pathological

     * instead we must use 
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