Chaotic fields, pressure, and MHD equilibria

Dr. S. Hudson and Prof. N. Nakajima

Princeton Plasma Physics Laboratory, U.S.A. National Institute for Fusion Sciences, Japan.

Abstract

 \rightarrow The ideal MHD equilibrium equations, $\mathbf{J} \times \mathbf{B} = \nabla p$, imply that pressure is constant along a field line, $\mathbf{B} \cdot \nabla p = 0$.

 \rightarrow For chaotic fields, this means that the structure of the pressure cannot be resolve d using standard numerical methods.

 $\left(\kappa_{\parallel} \textbf{ b } \textbf{ b } \cdot \nabla p + \kappa_{\perp} \nabla_{\perp} p \right)$ \rightarrow To avoid these problems, we instead consider the pressure to be determined by $\nabla \cdot (\kappa_{\parallel} \mathbf{b} \mathbf{b} \cdot \nabla p + \kappa_{\perp} \nabla_{\perp} p) = S.$

where $\kappa_{\parallel}, \kappa_{\perp}$ are diffusion coefficients, $\kappa_{\parallel} >> \kappa_{\perp}$, and S is a source.

 \rightarrow A numerical algorithm for solving this equation is being implemented in the HINT code.

Dr. Stuart Hudson

Research interests include:

- 1) Chaotic fields
	- 1) magnetic coordinates for chaotic fields
	- 2) heat transport, transport barriers in chaotic fields
- 2) Ideal MHD stability in stellarators
	- 1) ballooning stability in stellarators
	- 2) marginal stability diagrams for stellarators
- 3) MHD equilibrium calculation
	- 1) design of NCSX
	- 2) island healing algorithm

Part 1 : Review of Recent Work

In the following slides I will try to show that :

 \rightarrow chaotic fields are not random; near critical fields most relevant;

- → some flux surfaces may still exist (KAM surfaces) that **stop** field line transport;
- → other structures exist which **restrict** field line transport e.g. cantori;
- \rightarrow ghost-surfaces are almost invariant surfaces = replacement KAM surfaces;
- \rightarrow construct chaotic magnetic coordinates for chaotic fields;

 \rightarrow for heat transport in chaotic fields, temperature becomes a surface function; \rightarrow semi-analytic expression for temperature gradient can be derived;

For chaotic fields, field line transport is restricted by cantori

→ *the irrational KAM surfaces disintegrate into invariant irrational sets* \equiv *cantori*, *which continue to restrict field line transport even after the onset of chaos.*

← *poloidal angle* →

Cantori are approximated by high-order periodic orbits;

→ *high-order (minimizing) periodic orbits are located using variational methods;*

Magnetic field lines, $\mathbf{B} = \nabla \times \mathbf{A}$, are stationary curves C of the action integral $S = \begin{bmatrix} \mathbf{A} \cdot \mathbf{d} \mathbf{l} \end{bmatrix}$ *C*• Magnetic field lines, $\mathbf{B} = \nabla \times \mathbf{A}$, are stationary curves C of the action integral $S = | \mathbf{A} \cdot \mathbf{A}|$ ∫ $\mathbf{B} = \nabla \times \mathbf{A}$, are stationary curves C of the action integral $S = \mathbf{A} \cdot \mathbf{d}$

where $\mathbf{A} = \psi \nabla \theta - \chi \nabla \phi$ and $\chi(\psi, \theta, \phi) = \psi^2 / 2 + \sum k_{mn}(\psi) \cos(m\theta - n\phi)$.

- Setting $\delta S = 0$ gives $\dot{\theta} = B^{\theta}/B^{\phi} = \dot{\theta}(\psi, \theta, \phi)$ and $\dot{\psi}$ $\dot{\theta} = B^{\theta}/B^{\phi} = \dot{\theta}(\psi, \theta, \phi)$ and $\dot{\psi} = B^{\psi}/B^{\phi}$.
- A piecewise linear, $\theta(\phi) = \theta_i + (\theta_{i+1} \theta_i)/\Delta\phi$, trial curve allows analytic evaluation of the action integral, $S = S(\theta_0, \theta_1, \theta_2 \dots) \rightarrow$ fast!
- To find (p, q) periodic curves, use Newton's method to find $\partial S / \partial \theta_i = 0 \rightarrow robust!$ with constraint $\phi_N = 2\pi q$, $\theta_N = \theta_0 + 2\pi p$.
- Two types of periodic orbit: O: stable, action-minimax $X:$ unstable, action-minimizing \rightarrow *cantori* as $p/q \rightarrow irrational$

Ghost-surfaces constructed via action-gradient flow between the stable & unstable periodic orbits.

C. Golé, J. Differ. Equations **97**, 140 1992., R. S. MacKay and M. R. Muldoon, Phys. Lett. A **178**, 245, 1993.

- At the minimax (stable) periodic orbit, the eigenvector of the Hessian, $\partial^2 S / \partial^2 \theta_{ij}$, with negative eigenvalue indicates the direction in which the action integral decreases.
- Pushing trial curve from minimax (stable) p/q orbit down action-gradient flow to p/q orbit defines *ghost* - *surfaces*,
- Ghost-surfaces may be thought of as rational coordinate surfaces that pass through island chains.

Steady state temperature is solved numerically; isotherms coincide with ghost-surfaces.

→ *ghost-surfaces "fill in the gaps" in the irrational cantori; quasi-KAM surfaces for chaos!*

 \rightarrow *ghost-surfaces and isotherms are almost indistinguishable;*

Chaotic-coordinates simplifies temperature profile

→ *ghost-surfaces can be used as radial coordinate surfaces → chaotic-coordinates (s,* θ*,*φ*)*

• From
$$
0 = \frac{\partial}{\partial s} \int_{V} \nabla \cdot \mathbf{q} dV = \frac{\partial}{\partial s} \int_{\partial V} \mathbf{q} \cdot \mathbf{n} d\sigma
$$
 assume $T = T(s)$ to derive $T' = \frac{const.}{K_{\parallel} \Omega + K_{\perp} G}$
for quadratic-flux $\Omega = \int d\sigma g^{ss} (B_n / B)^2$, and metric $G = \int d\sigma g^{ss}$, where $g^{ss} = \nabla s \cdot \nabla s$, $B_n = \mathbf{B} \cdot \nabla s / |\nabla s|$
• in the "ideal limit" $K_{\perp} \to 0$, $T' \to \infty$ on irrational KAM surfaces where $\Omega = 0$;

• non-zero κ_{\perp} ensures $T(s)$ is smooth, T' peaks on minimal- Ω surfaces (noble cantori).

Part 2 : Outline of work at NIFS

In the following slides I will try to show that:

- \rightarrow for a chaotic field, the equation $\mathbf{B} \cdot \nabla p = 0$ has the solutions
- $(i) p' = zero, or$
- $\left($ ii) p ' is discontinuous almost everywhere;
- \rightarrow discuss the modifications required to the HINT code $p(p) = 0$ with anisotropic pressure diffusion $\nabla \cdot (\kappa_{\parallel} \mathbf{b} \mathbf{b} \cdot \nabla p + \kappa_{\perp} \nabla_{\perp} p) = S$

 \rightarrow give some early results indicating numerical convergence for a toy magnetic field

Chaotic Magnetic Fields are Fractal

KAM theorem: a finite measure of irrational flux surfaces will remain $*$ the rotational transform, *, must be sufficiently irrational*

$$
\exists r > 0, \ \exists k > 2 \ \ s.t. \ \forall m, n \in \mathbb{Q}, \ \left| \frac{l - n}{m} \right| > \frac{r}{m^k}
$$

* KAM surfaces can support pressure gradient ∗ rational surfaces are destroyed → replaced by local irregular region

* Let S be the set $s \in S$ if KAM surface with $t = s$ exists * Let $I(s)$ be an indicator function: $I(s) = 1$ if $s \in S$, $I(s) = 0$ if $s \notin S$

 $\mathbf{B} \cdot \nabla p = 0$ requires that $p'(s) = I(s)P(s)$ $*$ for $p(s)$ to be continuous, $P(s)$ must be bounded

* $I(s) = 0$ for $s = n/m$, $p'(s) = 0$ for $s = n/m$ * for p(s) to be non-trivial, $p'(s) \neq 0$ for $s \neq n/m$

 $p'(s)$ is discontinuous almost everywhere

The HINT code seeks approximation to MHD equilibria

 \rightarrow the (old) HINT code seeks solutions to

- (1) $\mathbf{B} \cdot \nabla p = 0$
- (2) **J** \times **B** $-\nabla p = 0$
- $(3) \nabla \times (\mathbf{v} \times \mathbf{B} \eta \mathbf{J}) = 0$

(1) $\nabla \cdot (\kappa_{\parallel} \nabla_{\parallel} p + \kappa_{\perp} \nabla_{\perp} p) = S,$ \rightarrow the (new) HINT code (under development) will solve (2) $\mathbf{J} \times \mathbf{B} - \nabla p + \mu \nabla \cdot \nabla \mathbf{v} = \rho \mathbf{v} - \nabla \mathbf{v}$ $(\mathbf{3}) \nabla \times (\mathbf{v} \times \mathbf{B} - \eta \mathbf{J}) = 0$

where $\nabla_{\parallel} = \mathbf{B} \frac{\partial}{\partial t} = \text{directional derivative along the field}$ $\kappa_{\parallel} >> \kappa_{\perp}$ are the parallel and perpendicular diffusion coefficients; $\cdot \nabla$ $\nabla_{\mathbf{u}}=\mathbf{B} \ \frac{\mathbf{v}}{\mathbf{v}}=$ $\mathbf{B} = \mathbf{B} + \frac{\mathbf{B}}{2}$

Numerical solution to anisotropic diffusion almost completed

 \rightarrow A field aligned grid is constructed by following field lines [→]Similar to existing HINT algorithm for pressure relaxation but faster; \rightarrow A 4th-order finite-difference solution has been implemented (for a toy field) →the expected convergence is obtained;

Conclusion

 \rightarrow Chaotic magnetic fields have a fractal structure; * field line transport is not diffusive

 \rightarrow The chaotic structure can be exploited * irrational cantori severely restrict radial field line trans port * magnetic coordinates for chaotic fields can be constructed * the temperature becomes a surface function

 \rightarrow If ignored, the chaotic structure causes problems for numerical algorithms * the solution to $\mathbf{B} \cdot \nabla p = 0$ is pathological

* instead we must use $\nabla \cdot (\kappa_{\parallel} \nabla_{\parallel} p + \kappa_{\perp} \nabla_{\perp} p) = S$