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Content of talk
• Motivations: 
- magnetic coordinates when magnetic surfaces break
- electron heat transport in chaotic magnetic fields
• Close-to-integrable 1½-d.o.f. systems
• Periodic pseudo-orbits as basis of approach
• Action minimization strategies for pseudo-orbits: 
- Ghost surfaces
- Quadratic-Flux-Minimizing (QFMin) surfaces
• QFMin theorem
• Kicked Rotor model ⇒ area-preserving map ⇒ 

visualizations



Coordinates for 3-D 
Magnetic fields

Equilibrium & stability (e.g.  VMEC or SPEC) calculations 
in 3-D require magnetic coordinates.  But how to define 

when good magnetic surfaces don’t necessarily exist?



Almost-invariant tori act as barriers to 
heat diffusion in chaotic magnetic 

fields
Hudson & Breslau 
Phys Rev Letters 
100, 095001 (2008) 
show that 
temperature contours 
for heat diffusion in 
fields with imperfect 
magnetic surfaces 
appear to agree 
very well with 
“ghost surfaces”



Or corresponding Lagrangian 

where             is obtained by solving one of the 
Hamiltonian eqs. of motion exactly:

Magnetic fields in 3D toroidal confinement systems 
are close-to-integrable 1½-d.o.f. Hamiltonian 

systems

• Consider non-autonomous, periodic-in-time system 
with Hamiltonian approximately in action-angle form

H = H0(I, θ) + �H1(I, θ, t)

L ≡ I(θ, θ̇, t)θ̇ −H(I, θ, t)

= L0(θ, θ̇) + �L1(θ, θ̇, t)
I(θ, θ̇, t)

• Define a pseudo-orbit as a path satisfying the other 
Hamiltonian eq. of motion approximately: İ + Hθ = O(�)

θ̇ −HI(I, θ, t) ≡ 0



Periodic orbits as a key to chaos

• Periodic orbits are simpler to work with than KAM tori 
and cantori with irrational rotation numbers

• Per. orbits with rot. no. sequence                             ,
            chosen by a continued fraction construction, can 
be used to determine the transition from invariant torus 
to cantorus [Greene  J. Math. Phys. 20, 1183 (1979)].

H. Poincaré:  Les Méthodes Nouvelles de la Mécanique Céleste
quoted by Bountis & Helleman in Lecture Notes in Physics — 

Volta Memorial Conference, Como, 1977 (Springer, 1979)

ωp,q = p/q → ωirrat.

ωirrat.

p, q ∈ Z



Action the other key
Pierre-Louis Moreau de 
Maupertuis 1698–1759

William Rowan Hamilton 
1805–1865

• Consider periodic pseudo-orbit            , then 
Lagrangian (configuration space) action over 1 period 
is S[ϑ] =

� 2πq

0
L(θ, θ̇, t) dt

θ = ϑ(t)

• Hamiltonian action on phase-space path
                         is

Sph[ϑ, I] =
� 2πq

0
[I θ̇ −H(I, θ, t)] dt

• Hamilton’s principle for a true periodic orbit is
                , or                         , giving both Hamilton 
equations of motion as Euler–Lagrange equations.

θ = ϑ(t), I = I(t)

δS = 0 ∀ δϑ δSph = 0 ∀ δϑ, δI



Action minimizing & 
minimax orbits (schematic)
• Integrable case

Continuous family of p,q-periodic 
orbits with same action, giving an 
invariant torus

• Perturbed case
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Minimizing and minimax orbits 
& almost-invariant surfaces

• Blue dots are p,q-periodic orbits 
that minimize the action S

• Red dots are p,q-periodic orbits that 
are saddle (minimax) points of the 
action S

• Periodic orbits are invariant under 
the dynamics

• An almost-invariant p,q curve is an 
interpolation through the periodic 
orbits belonging to a p,q island chain
— not unique:  how to choose?
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Action gradients

• Define gradients in path space as functional derivatives:

δS =
�

δϑ,
δS

δθ

�
δSph =

�
δϑ,

δSph

δθ

�
+

�
δI,

δSph

δI

�

�f, g� ≡
� 2πq

0
fg dt

• Define functional inner product over periodic orbit:

δS

δθ
= Lθ −

d

dt
Lθ̇

δSph

δθ
= −İ −Hθ,

δSph

δI
= θ̇ −HI

• On a pseudo-orbit we constrain:                           ,

i.e.

θ̇ −HI(I, θ, t) ≡ 0
δSph

δI
≡ 0, ⇒ δSph

δθ
=

δS

δθ
(Action gradient; also a 
surface flux density)= O(�)



Strategies for “joining the dots”

• QFMin surfaces minimize the quadratic flux:

under variations of trial surface made up of family 
QFMin pseudo-orbits                   .

• Ghost surfaces are foliated by a family of pseudo-
orbits constructed by action-gradient flow from 
minimax to minimizing orbits:

∂ϑghost(t|θ0)
∂θ0

∝ −δS

δθ

ϕ2 ≡
1
2

� 2π

0

� 2π

0

�
δS

δθ

�2

dθdt

where we label pseudo-orbits by      s.t. ϑ(0|θ0) = θ0θ0

ϑQFMin(t|θ0)



where C is a periodic field line (orbit), closing on 
itself after making p poloidal rotations about the 
magnetic axis, and q toroidal rotations about z axis.

Equation of motion follows from Hamilton’s 
Principle                                       .

Action of a closed field line
Use vector potential representation                 .  Action 
is

B = ∇×A

δS/δr = ṙ×B = 0 ⇒ ṙ � B

S[C] ≡
�

C
A·dl ≡

� 2πq

0
A·ṙ dζ , where ṙ ≡ dr/dζ

Standard Hamiltonian form obtained from Clebsch 
representation A = ψ∇θ − χ(ψ, θ, ζ)∇ζ



• Standard linear mag. flux through 
surface                        is  

• Quadratic flux through    is 

ϕ1[Γ] ≡
� 2π

0

� 2π

0
dθdζ

n·B
n·∇θ×∇ζ

≡ 0

ϕ2[Γ] ≡ 1
2

� 2π

0

� 2π

0
dθdζ

n·B
n·∇θ×∇ζ

n·B
n·∇Θ×∇ζ

≥ 0

Γ

Can auxiliary poloidal angle    be chosen so that 
quadratic-flux-minimizing (QFMin) surface    is 
also a ghost surface?

Θ
Γ

Γ : ψ = ψΓ(θ, ζ)

In magnetic fields, action gradient 
is proportional to n.B



In strongly chaotic fields 
unreconciled ghost and QFMin 

surfaces differ
Hudson & Dewar Phys Letts 
A 373, 4409 (2009) show 
that ghost surfaces and 
QFMin surfaces agree well for 
moderate nonlinearity. 

But at strong nonlinearity they 
are clearly different. 

QFMin surfaces are no 
longer graphs over 
angle. Can this be fixed 
by redefining Ghost & 
QFMin almost-invariant 
surfaces so they agree?



“QFMin Theorem”
• Consider torus in 3-D phase space

d

dt

�
δS

δθ

�
= 0 ⇒ δS

δθ
= ν(θ0), const. on pseudo-orbit

Defines pseudo-orbit dynamics
T : I = ρ(θ, t)

ϑ̇ = HI(ρ(ϑ, t),ϑ, t)

• Vary quadratic flux, using δϑ̇ = HIIδρ

İ = ρt + ϑ̇ρθ

δİ = δρt + ϑ̇δρθ + δϑ̇ρθ

δ
δS

δθ
= −δİ −HIθδρ

• Integrating by parts, and setting             we findδϕ2 = 0

This slight modification to Hamiltonian dynamics 
allows us to find a family of QFMin orbits defining T



Kicked-rotor model
Assume H =

1
2
I
2 +

∞�

n=−∞
δ(t− tn)V (θ)

where               are the times of the “kicks”tn ≡ 2πn

Solving QFMin eq. betw. kicks get piece-wise quadratic fn.

ϑ (t) = −1
2
νt2 +

1
2π

�
(tn+1 − t)

�
θn +

1
2
νt2n

�
+ (t− tn)

�
θn+1 +

1
2
νt2n+1

��

tn < t < tn+1

θn+1 − 2θn + θn−1 + 2πV �(θn) + (2π)2ν = 0

At kicks,    is continuous, but    and   
jump.  Difference equation relating 
successive values of angles at kicks is:

ϑ ϑ̇ I



Ghost & QFmin curves 
for Standard Map

QFMin curves Ghost curves

V (θ) = − k

(2π)2
cos θ

Red/green curves images of each other — intersections invariant, periodic pts.
QFMin curves minimize vertical distance in least squares.



Conclusion

• We have given a formulation of QFMin and ghost tori 
for general Hamiltonian/Lagrangian dynamical systems

• Area-preserving maps appear naturally as a special case

• Mean-square flux minimization (QFMin) is a physically 
natural and computationally convenient way to define 
almost invariant tori, but until now its mathematical 
properties were not as good as ghost surfaces

• Currently studying unification of QFMin and ghost tori 
by coordinate transformation θ �→ Θ


