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Motivation & Outline

— The simplest model of approximating global, macroscopic force balance in toroidal plasma
confinement with arbitrary geometry is magnetohydrodynamics (MHD)

— As toroidal magnetic fields are analogous to 1-1/2 Hamiltonians, and are generally chaotic, we need
an MHD equilibrium code that allows for chaotic fields.

— Existing ideal MHD equilibrium codes with chaotic fields fail to accommodate the fractal structure
of Hamiltonian chaos. This leads to an ill-posed numerical algorithm for computing numerically-
intractable, pathological equilibria.

— A new partially-relaxed, topologically-constrained MHD equilibrium model is described and
implemented numerically. Results demonstrating convergence tests, benchmarks, and non-trivial

solutions are presented.



Ideal-force-balance with chaotic field 1s pathological
ideal MHD theory =
*1deal-force-balance, Vp = jxB, gives B-Vp =0

— transport of pressure along field is “infinitely” fast
— no scale length in ideal MHD
— pressure adapts exactly to structure of phase space

chaos theory =

*for non-symmetric systems nested family of flux surfaces is destroyed
*1slands & irregular field lines appear where transform is rational (7 /m), rationals are dense in space
Poincare-Birkhoff theorem — periodic orbits, (e.g. stable and unstable) guaranteed to survive into chaos
*irrational surfaces survive if there exists an r, k € R s.t. for all rationals, |1-n/ m|> r m™
1.e. rotational-transform, ¢, is poorly approximated by rationals,

Diophantine condition
Kolmogorov, Arnold and Moser

ideal MHD theory + chaos theory = pathological equilibrium
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To have a well posed equilibrium with chaotic B need to extend beyond ideal MHD.
e.g. introduce non-ideal terms, such as resistivity, 7, perpendicular diffusion, x ,[ HINT, M 3D, ..],
— or can relax infinity of ideal MHD constraints



Taylor relaxation: a weakly resistive plasma will relax,

subject to single constraint of conserved helicity
Taylor relaxation, [Taylor, 1974]

W:J (p+B°12)dv, sz (A-B)dv
14 V

plasma energy helicity, B=VxA

Constrained energy functional F =W — uH /2, u=Lagrange multiplier
Euler-Lagrange equation, for unconstrained variations in magnetic field, VxB = uB

linear force-free field = Beltrami field

But, . . .Taylor relaxed fields have no pressure gradients

Ideal MHD equilibria and Taylor-relaxed equilibria are at opposite extremes . . . .

Ideal-MHD — imposition of mﬁn ity of ideal MHD constraints

non-trivial pressure profiles, but structure of field is over-constrained

Taylor relaxation — imposition of S n g [e constraint of conserved global helicity

structure of field is not-constrained, but pressure profile is trivial, i.e. under-constrained

We need something in between . . .
. . . perhaps an equilibrium model with ﬁnitely many ideal constraints, and partial Taylor relaxation?



Introducing the multi-volume, partially-relaxed model of
MHD equilibria with topological constraints

Energy, helicity and mass integrals

B2
- ( Py jdv, | (amdv. M= | pa L
p\y-1 2 v, v,
. g , N . , N )
plasma energy helicity mass
Multi-volume, partially-relaxed energy principle a
* A set of N nested toroidal surfaces enclose N annulur volumes

— the interfaces are assumed to be ideal, 0B = V x (5?; X B)

* The multi-volume energy functional 1s

F:ZZI(VVI — /2_V1Mz)

— field remains tangential to interfaces,

Euler-Lagrange equation for unconstrained variations in A — afinite number of ideal constraints,
imposed topologically!

In each annulus, the magnetic field satisfies VxB, = /B,

Euler-Lagrange equation for variations in interface geometry

Across each interface, pressure jumps allowed, but total pressure is continuous [[p+ B’ / 21]=0

— an analysis of the force-balance condition is that the interfaces must have strongly irrational transform

ideal interfaces coincide with KAM surfaces



Topological constraints :
pressure gradients coincide with flux surfaces

The 1deal interfaces are chosen to coincide with pressure gradients

— parallel transport dominates perpendicular transport,
—> Simplest approximation 1S B'Vp =0 — structure of B and structure of the pressure are intimately connected;

— pressure gradients must coincide with KAM surfaces = ideal interfaces

— cannot apriori specify pressure without apriori constraining structure of the field;

A fixed boundary equilibrium is defined by :
(1) given pressure, p(y ), and rotational-transform profile, 7(y)
(i1) geometry of boundary;

(a) only stepped pressure profiles are consistent (numerically tractable) with chaos and BsVp =0
(b) the computed equilibrium magnetic field must be consistent with the input profiles

(a) + (b) = where the pressure has gradients, the magnetic field must have flux surfaces.



Existence of Three-Dimensional Toroidal MHD
Equilibria with Nonconstant Pressure

OSCAR P. BRUNO PETER LAURENCE

California Institute of Technology  Universita di Roma "La Sapienza”

We establish an existence result for the three-dimensional MHD equations

(VXBYxB=Vp
V-B=0
B:-nlsgr=0

with p + const in tori T without symmetry. More precisely, our theorems insure the existence of sharp
boundary solutions for tori whose departure from axisymmetry is sufficiently small; they allow for
solutions to be constructed with an arbitrary number of pressure jumps. € 1996 John Wiley & Sons, Inc.

Communications on Pure and Applied Mathematics, Vol. XLIX, 717-764 (1996)

— how large the “sufficiently small” departure from axisymmetry can be needs to be explored numerically . . . .



Extrema of energy functional obtained numerically;
introducing the Stepped Pressure Equilibrium Code, SPEC

The vector-potential 1s discretized

* toroidal coordinates (s,$,¢), *interface geometry R, = Zm R, cos(m4-ng),Z = Z Z, ., sin(m3—nd)
* exploit gauge freedom A = A4, (5,3, )VI+ A4, (s,9,0)VE
* Fourier A, =D as(s)cos(md - ng)

* Fini — .
Finite-element as(s) = Zi as.i (S )(0(‘5' ) Ppiecewise cubic or quintic basis polynomials

and inserted into constrained-energy functional.

* derivatives w.r.t. vector-potential — linear equation for Beltrami field V x B = uB solved using sparse linear solver
* field in each annulus computed independently, distributed across multiple cpus
* field in each annulus depends on enclosed toroidal flux (boundary condition) and

— pOlOldal ﬂUX, l//P > and hellCItY'mUItlpller9 H adjusted so interface transform is strongly irrational

— geometry of interfaces, § = {Rm,n , Zm,n}

Force balance solved using multi-dimensional Newton method.

* interface geometry is adjusted to satisfy force F[§] = {[[p+ B’ / 2], } =0

. . 2 2 2
* angle freedom constrained by spectral-condensation, adjust angle freedom to minimize ) m ( R +7° )

* derivative matrix, VF[E], computed using finite-differences minimal spectral width [Hirshman, VMEC]

* quadratic-convergence w.r.t. Newton iterations future work .. .
1) approximate derivative matrix ~ 2" variation of energy functional

2) implement pre-conditioner



Numerical error in Beltrami field scales as expected
Scaling of numerical error with radial resolution depends on finite-element basis

A=A,VI+A VS, B=VXA, j=VxB, need to quantify error j-uB
A39Ag ~ O(hn) h =radial grid size=1/N

n = order of polynomial
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stepped-pressure equilibria accurately approximate

smoot

h-pressure axisymmetric equilibria

increasing pressure
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in axisymmetric geometry . . .

— magnetic fields have family of nested flux surfaces
— equilibria with smooth profiles exist,
— may perform benchmarks (e.g. with VMEC)
(arbitrarily approximate smooth-profile with stepped-profile)
— approximation improves as number of interfaces increases

— location of magnetic axis converges w.r.t radial resolution

magnetic axis vs. radial resolution
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Equilibria with (1) perturbed boundary—-chaotic fields,
and (11) pressure are computed .

zero-pressure equilibrium high-pressure equilibrium boundary deformation induces islands
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Demonstrated convergence
with Fourier resolution

Convergence of (2,1) & (3,1) island widths
with Fourier resolution for f ~4% case
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Summary

— A partially-relaxed, topologically-constrained energy principle has been presented
for MHD equilibria with chaotic fields and non-trivial (i.e. non-constant) pressure

— The model has been implemented numerically

* using a high-order (piecewise quintic) radial discretization
* an optimal (i.e. spectrally condensed) Fourier representation

* workload distrubuted across multiple cpus,
* extrema located using Newton’s method with quadratic-convergence

— Intuitively, the equilibrium model is an extension of Taylor relaxation to multiple volumes

— The model has a sound theoretical foundation

* solutions guaranteed to exist (under certain conditions)

— The numerical method 1s computationally tractable

* does not invert singular operators
* does not struggle to resolve fractal structure of chaos

— Convergence studies have been performed

* expected error scaling with radial resolution confirmed
* detailed benchmark with axisymmetric equilibria (with smooth profiles)
* that the 1sland widths converge with Fourier resolution has been confirmed






Toroidal magnetic confinement depends on flux surfaces

Transport in magnetized plasma dominately parallel to B
— 1f the field lines are not confined (e.g. by flux surfaces), then the plasma is poorly confined

Axisymmetric magnetic fields possess a continuously nested family of flux surfaces
— nested family of flux surfaces is guaranteed if the system has an ignorable coordinate

magnetic field is called integrable

—> rational ﬁeld—line = peI'iOdiC tI'aj eCtOI'y Sfamily of periodic orbits = rational flux surface

rational field-line 3= 0.3333... & ‘

— 1rrational field-lines cover irrational flux surface ( I *
magnetic field lines wrap around toroidal “flux” surfaces ST )

periodic poloidal angle 9

straight-field-line flux coordinates,
BV =0
B=VyxV3+i(y)V{xVy

@B-VEG§+189 \

magnetic differential equation, BeV o = s, -
is singular at rational surfaces, (m 1— n) o, =i(\/g9),., periodic toroidal angle {

periodic poloidal angle 9




Ideal MHD equilibria are extrema of energy functional

The energy functional is

W = -lV (p + Bz / 2) dv V = global plasma volume

1deal variations

mass conservation } 0;p+ V-( PV ) =0

state equation } di(pp’)=0

Faraday's law, 1deal Ohm's law } oB =V x (5 g X B) —ideal variations don’t allow field topology to change “frozen-flux”

the first variation in plasma energy is

Euler Lagrange equation for globally ideally—constrained variations

oW = -lV (Vp ol ke B) -08 dv ideal-force-balance ~Vp = jx B
— two surface functions, e.g. the pressure, p(s), and rotational-transform = inverse-safety-factor, 1i(s),
and —a boundary surface (.. for fixed boundary equilibria. .. ),

constitute “boundary-conditions”  that must be provided to uniquely define an equilibrium solution
...... The computational task is to compute the magnetic field that is consistent with the given boundary conditions . . .

nested flux surface topology maintained by singular currents at rational surfaces

from Ve(oB + j ) = 0, parallel current must satisfy BeVo =-Vej ,  where j, =BxVp/ B’

i g Vi), S
— magnetic differential equations are singular at rational surfaces (periodic orbits) mmn + (m [—n )

— pressure-driven “Pfirsch-Schliiter currents” have 1/ x type singularity (ml - I’l)
— O - function singular currents shield out islands




Topological constraints :
pressure gradients coincide with flux surfaces

The ideal interfaces are chosen to coincide with pressure gradients

— parallel transport dominates perpendicular transport, —» structure of B and structure of the
. . . . pressure are intimately connected;
— simplest approximation is BeVp =0

— cannot apriori specify pressure without
— pressure gradients must coincide with KAM surfaces = ideal interfaces ~ @priori constraining structure of the field;

-10
[next order of approximation, B«Vp is small, e.g. o,p= /<”V|2|p + K‘LVip = 0, with K, > K ,¢eg. Kl/l(” ~10

*pressure gradients coincide with KAM surfaces, cantori . . .. )
— where there are significant pressure gradients,

1/4 . : : .
*pressure flattened across islands, chaos with width > Aw c ™ ( K| / KH ) there can be no islands or chaotic regions with width > Awc

* anisotropic diffusion equation solved analytically, p' oc 1/ (K‘”(pz +K lG) , @, 1s quadratic-flux across cantori, G is metric term]

A fixed boundary equilibrium 1s defined by :
(1) given pressure, p(y ), and rotational-transform profile, (y)
(i1) geometry of boundary;

(a) only stepped pressure profiles are consistent (numerically tractable) with chaos and BeVp =0
(b) the computed equilibrium magnetic field must be consistent with the input profiles
(a) + (b) = where the pressure has gradients, the magnetic field must have flux surfaces.

— non-trivial stepped pressure equilibrium solutions are guaranteed to exist



A sequence of equilibria with increasing pressure and
perturbed boundary are computed

movie of sequence of equilibria with increasing pressure
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