Multi-volume, partially-relaxed MHD equilibria

Dr. Stuart Hudson and R.L. Dewar, M.J. Hole and M. McGann

20th International Toki Conference, 7-10 December 2010, Toki, Japan

Outline

• We need an equilibrium code that can handle chaotic fields

Toroidal magnetic confinement depends on flux surfaces

Transport in magnetized plasma dominately parallel to **B**

Confinement depends on existence of toroidal *flux* surfaces

* for axisymmetric magnetic fields → nested family of flux surfaces is guaranteed *magnetic field is called integrable*

 \rightarrow rational field-line = periodic trajectory

family of periodic orbits = *rational flux surface*

 $i(\sqrt{gs})$

→ irrational field-lines cover *irrational* flux surface magnetic field lines wrap around toroidal "flux" surfaces

straight field line flux coordinates,

$$\mathbf{B} \cdot \nabla \psi = 0$$

$$\mathbf{B} = \nabla \psi \times \nabla \vartheta + \iota(\psi) \nabla \zeta \times \nabla \psi$$

$$\sqrt{g} \mathbf{B} \cdot \nabla \equiv \partial_{\zeta} + \iota \partial_{\vartheta}$$

magnetic differential equation, $\mathbf{B} \cdot \nabla \sigma = s$,
is singular at rational surfaces, $(m \ \iota - n) \sigma_{m,n} =$

Ideal MHD equilibria are extrema of energy functional

energy functional (without flow)

$$W = \int_V (p + B^2 / 2) \, dv$$

 $V \equiv global plasma volume$

ideal variations

mass conservation

state equation

 $\Big\} d_t(p\rho^{-\gamma}) = 0$

 $\frac{\partial}{\partial t} \rho + \nabla \cdot (\rho \mathbf{v}) = 0$

Faraday's law, ideal Ohm's law $\delta \mathbf{B} = \nabla \times (\delta \boldsymbol{\xi} \times \mathbf{B})$

first variation in plasma energy

$$\delta W = \int_{V} (\nabla p - \mathbf{j} \times \mathbf{B}) \cdot \delta \boldsymbol{\xi} \, dv$$

Euler Lagrange equation for globally ideally-constrained variations = ideal-force-balance, $\nabla p = \mathbf{j} \times \mathbf{B}$

from $\nabla \cdot (\sigma \mathbf{B} + \mathbf{j}_{\perp}) = 0$, parallel current must satisfy $\mathbf{B} \cdot \nabla \sigma = -\nabla \cdot \mathbf{j}_{\perp}$

 \rightarrow magnetic differential equations are singular at rational surfaces \rightarrow pressure-driven currents have 1/x type singularity $\rightarrow \delta$ - function singular currents shield out islands

ideal variations do not allow topology of the field to change FROZEN FLUX

Ideal-force-balance with chaotic field is pathological

ideal MHD theory =

*ideal-force-balance,
$$\nabla p = \mathbf{j} \times \mathbf{B}$$
, gives $\mathbf{B} \cdot \nabla p = 0$
chaos theory =

 \rightarrow transport of pressure along field is "infinitely" fast

- ightarrow no scale length in ideal MHD
- \rightarrow pressure adapts exactly to structure of phase space
- *islands & chaos appear at all rational surfaces (n/m), and rationals are dense
- *irrational surfaces survive if there exists an $r, k \in \Re$ s.t. for all rationals, $|i n / m| > r m^{-k}$
 - i.e. rotational-transform, *i*, is *poorly approximated* by rationals,

Diophantine condition Kolmogorov, Arnold and Moser

ideal MHD theory + chaos theory \equiv pathological equilibrium

 $\begin{array}{c}
1.0 \\
p'(x) = \begin{cases}
0, & \text{if } \exists (p,q) \text{ s.t. } | x - n / m | < r m^{-k} \\
1, & \text{otherwise}
\end{array}$ *Spitzer iterations are ill-posed $\rightarrow \nabla p$ is discontinuous or zero 1) $\mathbf{B}_n \cdot \nabla p = 0$ 0.6 2) $\mathbf{j}_{\perp} = \mathbf{B}_n \times \nabla p / {B_n}^2 \longrightarrow \mathbf{j}_{\perp}$ is discontinuous or zero 0 0.4 3) $\mathbf{B}_n \cdot \nabla \sigma = -\nabla \cdot \mathbf{j}_1 \longrightarrow \text{cannot be inverted to obtain parallel current}$ $_{0.2} \mid p(x)$ is continuous $\nabla \cdot \boldsymbol{j}_{\scriptscriptstyle \perp}$ is not defined p'(x) is discontinuous 0.0 $\mathbf{B} \cdot \nabla$ is *irregularly* and *densely* singular 0.2 0.3 0.4 0.5 0.6 0.7 0.8 4) $\nabla \times \mathbf{B}_{n+1} = \mathbf{j} \equiv \sigma \mathbf{B}_n + \mathbf{j}_{\perp}$ Х

to have a well posed equilibrium with chaotic **B** need to extend beyond ideal MHD e.g. introduce non-ideal terms, such as resistivity, η , perpendicular diffusion, κ_{\perp} , [Hayashi, HINT], or . . . \rightarrow relax infinity of ideal MHD constraints <u>Taylor relaxation: a weakly resistive plasma will relax,</u> subject to single constraint of conserved helicity

Taylor relaxation

$$W = \int_{V} (p + B^2 / 2) dv, \qquad H = \underbrace{\int_{V} (\mathbf{A} \cdot \mathbf{B}) dv}_{\text{holicity}}$$

plasma energy

helicity

Constrained energy functional $F = W - \mu H / 2$, $\mu =$ Lagrange multiplier

Euler-Lagrange equation, for *unconstrained* variations, $\nabla \times \mathbf{B} = \mu \mathbf{B}$

Opposite Extremes

linear force-free field ≡Beltrami field no pressure gradients

Ideal MHD

 \rightarrow imposition of infinity of ideal MHD constraints (nested flux surfaces) non-trivial pressure profiles, but structure of field is over-constrained

We need something in between perhaps an equilibrium model with *finitely* many constraints, and *partial* Taylor relaxation?

Taylor relaxation \rightarrow imposition of single constraint of conserved global helicity structure of field is not-constrained, but pressure profile is trivial

<u>A multi-volume, partially-constrained model of</u> weakly-resistive MHD equilibria, with topological constraints

Energy, helicity and mass integrals

Across each interface, the total pressure is continuous $[[p+B^2/2]]=0$

 \rightarrow an analysis of the force-balance condition is that the interfaces must have strongly irrational transform

The equilibrium is defined by pressure & transform profiles, and outermost boundary

The ideal interfaces are chosen to coincide with pressure gradients

 $\mathbf{B} \cdot \nabla p = 0$ means that pressure gradients **must** coincide with KAM surfaces = ideal interfaces

A self-consistent model of MHD equilibria with

non-trivial, non-pathological pressure, with $\mathbf{B} \cdot \nabla p = 0$,

chaotic fields,

and finite-radial resolution,

with irregular, chaotic, volumes at every rational

N radial surfaces

- *means* \rightarrow across the chaotic volumes, the pressure is flat, $\nabla \times \mathbf{B} = \mu \mathbf{B}$,
 - \rightarrow finite pressure "jumps" at finite set of surfaces,
 - \rightarrow the "total pressure" [[$p + B^2 / 2$]] is continuous.

The multi-volume, partially relaxed equilibrium model is

- 1) consistent with weakly resistive plasma dynamics an extension of Taylor relaxation to multiple volumes, with additional topological constraints to allow for non-trivial pressure
- 2) consistent with the structure of chaotic fields does not need to resolve infinite detail of chaos
- 3) computationally tractable algorithm does not invert pathological singular operators

Extrema of energy functional obtained numerically

The vector-potential is discretized

* toroidal coordinates (s, ϑ, ζ) * exploit gauge freedom $\mathbf{A} = A_g(s, \vartheta, \zeta)\nabla\vartheta + A_{\zeta}(s, \vartheta, \zeta)\nabla\zeta$ * Fourier $A_g = \sum_{m,n} a_{\vartheta}(s) \cos(m\vartheta - n\zeta)$ * Finite-element $a_{\vartheta}(s) = \sum_i a_{\vartheta,i}(s)\varphi(s)$ piecewise cubic or quintic basis polynomials and inserted into constrained-energy functional.

* derivatives w.r.t. vector-potential d.o.f. \rightarrow linear equation for Beltrami field *solved using sparse linear solver* * field in each annulus computed independently, distributed across multiple cpus

* field in each annulus depends on

 \rightarrow poloidal flux, ψ_P , and helicity-multiplier, μ

 \rightarrow geometry of interfaces

Force balance solved using multi-dimensional Newton method.

* geometrical d.o.f. = interface geometry is adjusted to satisfy $[[p+B^2/2]]=0$

* tangential \equiv angle d.o.f. constrained by spectral-condensation

- * derivative matrix computed using finite-differences
- * quadratic-convergence w.r.t. Newton iterations
- * Beltrami fields in each annulus computed in parallel

minimal spectral width [Hirshman, VMEC]

future work . . .

- 1) approximate derivative matrix $\sim 2^{nd}$ variation of energy functional
- 2) implement pre-conditioner

adjusted so interface transform is strongly irrational

Numerical error in Beltrami field scales as expected

Scaling of numerical error with radial resolution depends on finite-element basis

Benchmark in axisymmetric geometry

In axisymmetric geometry, equilibria with smooth profiles exist

