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Motivation and Outline
→ The simplest model of approximating global, macroscopic force balance in toroidal plasma confinement 

with arbitrary geometry is magnetohydrodynamics (MHD)

→ Toroidal magnetic fields are analogous to 1-1/2 Hamiltonians, are generally not foliated by continuous 
family of flux surfaces, so we need an MHD equilibrium code that allows for non-integrable fields.

→ Ideal MHD equilibria with non-integrable magnetic fields (i.e. fractal phase space) are infinitely 
discontinuous. This leads to an ill-posed numerical algorithm for computing numerically-intractable, 
pathological equilibria.

→ A new partially-relaxed, topologically-constrained MHD equilibrium model is described and implemented 
numerically. Results demonstrating convergence tests, benchmarks, and non-trivial solutions are 
presented.
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An ideal equilibrium with non-integrable (chaotic) field and 
continuous pressure, is infinitely discontinous 

Kolmogorov, Arnold and Moser,  Diophantine condition

→ transport of pressure along field is “infinitely” fast 
→ no scale length in ideal MHD
→ pressure adapts exactly to structure of phase space
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Instead, a multi-region, relaxed energy principle for MHD 
equilibria with non-trivial pressure and chaotic fields



→ how large the “sufficiently small” departure from axisymmetry can be needs to be explored numerically . . . . 



By definition, an equilibrium code must constrain topology;
B·∇p=0 means flux surfaces must coincide with pressure gradients. 
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Extrema of energy functional obtained numerically;
introducing the Stepped Pressure Equilibrium Code, SPEC 
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 linear equation for Beltrami field 
* field in each annulus computed independently, distributed across multiple cpus
* field in each annulus depends on enclosed toroidal flux 
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Numerical error in Beltrami field scales as expected 

h = radial grid size = 1 / N
n = order of polynomial

Poincaré plot, ζ=0
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Stepped-pressure equilibria accurately approximate 
smooth-pressure axisymmetric equilibria 

magnetic fields have family of nested flux surfaces
equilibria with smooth profiles exist,
may perform benchmarks (e.g. with VMEC)
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Equilibria with (i) perturbed boundary≡chaotic fields, 
and (ii) pressure are computed .      
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Sequence of equilibria with increasing pressure shows 
plasma can have significant response to external perturbation.
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Summary 
→ A partially-relaxed, topologically-constrained energy principle has been presented 
for MHD equilibria with chaotic fields and non-trivial (i.e. non-constant) pressure

→ The model has been implemented numerically
* using a high-order (piecewise quintic) radial discretization
* an optimal (i.e. spectrally condensed) Fourier representation
* workload distrubuted across multiple cpus,
* extrema located using Newton’s method with quadratic-convergence

→ Intuitively, the equilibrium model is an extension of Taylor relaxation to multiple volumes

→ The model has a sound theoretical foundation
* solutions guaranteed to exist (under certain conditions)

→ The numerical method is computationally tractable
* does not invert singular operators
* does not struggle to resolve fractal structure of chaos

→ Convergence studies have been performed
* expected error scaling with radial resolution confirmed
* detailed benchmark with axisymmetric equilibria (with smooth profiles)
* that the island widths converge with Fourier resolution has been confirmed 





  if the field lines are not confined (e.g. by flux surfaces), then the plasma is poorly confined
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Ideal MHD equilibria are extrema of energy functional 
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→ two surface functions, e.g. the pressure,  p(s) , and rotational-transform ≡ inverse-safety-factor,  ι(s) , 
and → a boundary surface  ( . .  for fixed boundary equilibria . . .   ) , 
constitute  “boundary-conditions”     that must be provided to uniquely define an equilibrium solution
. . . . . . The computational task is to compute the magnetic field that is consistent with the given boundary conditions . . .

V ≡ global plasma volume

→ magnetic differential equations are singular at rational surfaces (periodic orbits)
→ pressure-driven “Pfirsch-Schlüter currents” have 1/ x type singularity
→ δ - function singular currents shield out islands

Euler Lagrange equation for    variations
                            ideal-force-balance      

globally ideally-constrained
p∇ = j× B

→ideal variations don’t allow field topology to change “frozen-flux”



Topological constraints : 
pressure gradients coincide with flux surfaces 

pressure gradients  coincide with KAM su
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simplest approximation is 0
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Taylor relaxation:   a weakly resistive plasma will relax, 
subject to single constraint of conserved helicity 
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 variations in magnetic field,    unconstrained μ∇× =B B

Ideal MHD equilibria and Taylor-relaxed equilibria are at opposite extremes . . . .

Ideal-MHD             → imposition of   infinity of ideal MHD constraints
non-trivial pressure profiles, but structure of field is over-constrained

Taylor relaxation → imposition of   single constraint of conserved global helicity
structure of field is not-constrained, but pressure profile is trivial, i.e. under-constrained

We need something in between .  .  .
.  .  .  perhaps an equilibrium model with finitely many ideal constraints, and partial Taylor relaxation?

linear force-free field ≡ Beltrami field

But, . . .Taylor relaxed fields have no pressure gradients



Sequence of equilibria with increasing pressure shows 
plasma can have significant response to external perturbation.

4
21 31

21 31

21 31

1.00

1.00

axisymmetric  plus   perturbation               = =10     
[0.30 cos(2 ) cos(3 )]cos( )
[0.30 cos(2 ) cos(3 )]sin( )

R

Z

δ δ
δ ϑ ζ δ ϑ ζ ϑ
δ ϑ ζ δ ϑ ζ ϑ

−

= +

= +

+ − + −

+ − + −

Resonant radial field at rational surface;
n=1,2,3 stability from PEST;



V4

V3

V2              

Introducing the multi-volume, partially-relaxed model of 
MHD equilibria with topological constraints 
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Sequence of equilibria with slowly increasing pressure

0.018totβ ≈0.000totβ ≈

21 31

21 31

1.00 0.30 cos( ) 0.05 cos(2 )
                      1.00 0.40 sin( )

  

:    

: [ cos(2 ) cos(3 )]cos( )
                       [ cos(2 ) cos(3 )]sin( )

R
plus Z

perturbation

axisymmetric

R
Z

ϑ ϑ

ϑ

δ δ ϑ ζ δ ϑ ζ ϑ
δ δ ϑ ζ δ ϑ ζ ϑ

= + +

= +

= − + −

= − + −

re
so

na
nt

 e
rr

or
 fi

el
d

pressure

20s
60m

T
T∇

≈
≈

F

F


	Partially-relaxed, topologically-constrained �MHD equilibria with chaotic fields. ���Stuart Hudson�Princeton Plasma Physics Laboratory�� R.L. Dewar, M.J. Hole & M. McGann� The Australian National University�� 5th International Workshop on Stochasticity in Fusion Plasmas, Jülich, Germany, 11th -14th April 2011�
	An ideal equilibrium with non-integrable (chaotic) field and continuous pressure, is infinitely discontinous 
	Instead, a multi-region, relaxed energy principle for MHD equilibria with non-trivial pressure and chaotic fields
	Slide Number 4
	By definition, an equilibrium code must constrain topology;�B∙p=0 means flux surfaces must coincide with pressure gradients. 
	Extrema of energy functional obtained numerically;�introducing the Stepped Pressure Equilibrium Code, SPEC 
	Numerical error in Beltrami field scales as expected 
	Stepped-pressure equilibria accurately approximate �smooth-pressure axisymmetric equilibria 
	Equilibria with (i) perturbed boundary≡chaotic fields, �and (ii) pressure are computed .      
	Slide Number 10
	Summary 
	Slide Number 12
	Toroidal magnetic confinement depends on flux surfaces 
	Ideal MHD equilibria are extrema of energy functional 
	Topological constraints : �pressure gradients coincide with flux surfaces 
	Taylor relaxation:   a weakly resistive plasma will relax, �subject to single constraint of conserved helicity 
	Sequence of equilibria with increasing pressure shows �plasma can have significant response to external perturbation.
	Introducing the multi-volume, partially-relaxed model of �MHD equilibria with topological constraints 
	Sequence of equilibria with slowly increasing pressure

