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Motivation and Outline
— The simplest model of approximating global, macroscopic force balance in toroidal plasma confinement
with arbitrary geometry is magnetohydrodynamics (MHD)

— Toroidal magnetic fields are analogous to 1-1/2 Hamiltonians, are generally not foliated by continuous
family of flux surfaces, so we need an MHD equilibrium code that allows for non-integrable fields.

— Ideal MHD equilibria with non-integrable magnetic fields (i.e. fractal phase space) are infinitely
discontinuous. This leads to an ill-posed numerical algorithm for computing numerically-intractable,
pathological equilibria.

— A new partially-relaxed, topologically-constrained MHD equilibrium model is described and implemented
numerically. Results demonstrating convergence tests, benchmarks, and non-trivial solutions are

presented.



An 1deal equilibrium with non-integrable (chaotic) field and

continuous pressure, 1s infinitely discontinous
l' dea l MHD theory — Vp — jx B, gives B- Vp — O — transport of pressure along field is “infinitely” fast

— no scale length in ideal MHD
— pressure adapts exactly to structure of phase space

chaos theory = nowhere are flux surfaces continuously nested

*for non-symmetric systems, nested family of flux surfaces is destroyed;

*1slands & irregular field lines appear where transform is rational (7 / m); rationals are dense in space;
Poincare-Birkhoff theorem — periodic orbits, (e.g. stable and unstable) guaranteed to survive into chaos

*some irrational surfaces survive if there exists an 7, k € R s.t. for all rationals. li-n/m|>r m™.

i.e. rotational-transform, z, is poorly approximated by rationals, LS AT RO A, ILUP AT SO
but nowhere are smooth flux surfaces continuously nested, i.e. nowhere foliate space;

ideal MHD theory + chaos theory — infinitely discontinuous equilibrium

. . . eqe1 o e . . —k
*1terative method for calculating equilibria is ill-posed; o[\ {O, if 3(m, n) s.t.| x %1 [<rm
1) B, -Vp=0 — Vp is everywhere discontinuous, or zero; L, otherwise

. ) ) ) «flatten pressure at every rational
2)j, =B, xVp / B~ — ], everywhere discontinuous or zero. § i -infinite fractal structure
. . ) % -not Riemann integrable
3) B,-Vo=-V-j,; B-Visdensely and irregularly singular, 9
condition that o be single valued 6o = —Cﬁc V.j,dl/B=0; =
pressure must be flat on every closed field line, or parallel current is not single-valued;
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radial coordinate=transform
To have a well-posed equilibrium with chaotic B need to extend beyond ideal MHD.
e.g. introduce non-ideal terms, such as resistivity, 77, perpendicular diffusion, x ,[ HINT, M 3D, NIMROD, ..],
— or can relax infinity of ideal MHD constraints



Instead, a multi-region, relaxed energy principle for ME
equilibria with non-trivial pressure and chaotic fields

Energy, helicity and mass integrals (defined in nested annular volumes) \ ¢
W, = I (—+—j v, szj (A-B)dv, MZ:J p"dv
Vi Vi 4
J . ~ / ~——
plasma energy helicity mass

Seek extrema of plasma energy with constraints :  |F = ZINZI (W, —wH,12—v,M,)

First variation due to unconstrained variations in pressure, fields and geometry

except ideal constraint 6B = V x (& xB) imposed discretely at interfaces

1/)/ 1
2
OF = Z; 1{jy ( j5p dv+le 5A.(V><B—y,B)dv—jaVl [[.p‘+li /2]] %-dS}
7 VxB=1,B in each annulus Conug:;l;(t)ysso ifntt(c)etrzggé:ssure

—7/p/(7/ 1)=const.
in each annulus

Equilibrium solutions when VxB = B in annuli, [[p+B*/2]]=0 across interfaces

— partial Taylor relaxation allowed in each annulus; allows for topological variations/islands/chaos;
— global relaxation prevented by ideal constraints; — non-trivial stepped — pressure solutions;
— VxB = 1B is a linear equation for B; depends on interface geometry; solved in parallel in each annulus;

— solving force balance = adjusting interface geometry to satisfy [[p+B’*/2]]=0;
standard numerical problem finding zero of multi-dimensional function;

call NAG routine: Newton & convex gradient method;



Existence of Three-Dimensional Toroidal MHD
Equilibria with Nonconstant Pressure

OSCAR P. BRUNO PETER LAURENCE

California Institute of Technology  Universita di Roma "La Sapienza”

We establish an existence result for the three-dimensional MHD equations

(VXBYxB=Vp
V-B=0
B:-nlsgr=0

with p + const in tori T without symmetry. More precisely, our theorems insure the existence of sharp
boundary solutions for tori whose departure from axisymmetry is sufficiently small; they allow for
solutions to be constructed with an arbitrary number of pressure jumps. € 1996 John Wiley & Sons, Inc.

Communications on Pure and Applied Mathematics, Vol. XLIX, 717-764 (1996)

— how large the “sufficiently small” departure from axisymmetry can be needs to be explored numerically . . . .



By definition, an equilibrium code must constrain topology;
B- Vp=0 means flux surfaces must coincide with pressure gradients.

Definition: Equilibrium Code (fixed boundary)

given (1) boundary (2) pressure (3) rotational-transform = inverse g-profile (or current profile);
— calculate B that 1s consistent with force-balance; pressure profile is not changed!
compare with "coupled equilibrium-transport" algorithm:

— simultaneously evolve pressure, etc. , while adjusting B;

An equilibrium code must enforce topological constraints;

— Parallel transport > perpendicular transport; simplest approximation B -Vp=0;
— The constraint B-Vp=0 means the structure of B and p are intimately connected;

*cannot apriori specify pressure without apriori constraining topology of the field;

— pressure gradients must coincide with flux surfaces;
— the flux surfaces most likely to survive are Farey tree
strongly irrational ="noble";

= limit of alternating path down Farey-tree;

= Fibonacci sequence

p P, ptp, p,+yp,

s ye . . > ———=_ v = golden mean
9 4, 4,4, q, + 74,




Extrema of energy functional obtained numerically;
introducing the Stepped Pressure Equilibrium Code, SPEC

The vector-potential 1s discretized

* toroidal coordinates (s,4,¢), *interface geometry R, = Z R, ,cos(m8-ng),Z, = Z Z, ., sin(m3—n{)
* exploit gauge freedom A = A4, (5,3, )VI+ 4. (s,9,0)VE
* Fourier A, =2 as(s)cos(md - ng)
* Finite-element as(s) = Zi as, i(S )@(S ) Ppiecewise cubic or quintic basis polynomials
N
l_

and inserted into constrained-energy functional F =)~ (W, - uH,/2—v,M,)

* derivatives w.r.t. vector-potential — linear equation for Beltrami field V x B = 4B solved using sparse linear solver
* field in each annulus computed independently, distributed across multiple cpus
* field in each annulus depends on enclosed toroidal flux (boundary condition) and

- poloidal ﬂLIX, 174 P> and helicity-multiplier, M adjusted so interface transform is strongly irrational

— geometry of interfaces, § = {Rm,nazm,n}

Force balance solved using multi-dimensional Newton method.

* interface geometry is adjusted to satisfy force F[§] = {[[p+ B’ / 2] } =0

* angle freedom constrained by spectral-condensation, adjust angle freedom to minimize ) m’ (R2 +7Z : )

* derivative matrix, VF[&], computed in parallel using finite-differences minimal spectral width [Hirshman, VMEC]

* call NAG routine: quadratic-convergence w.r.t. Newton iterations; robust convex-gradient method;



Numerical error in Beltrami field scales as expected
Scaling of numerical error with radial resolution depends on finite-element basis

A=A ,VI+A VS, B=VXA, j=VxB, need to quantify error j - 4B
A39Ag ~ O(hn) h =radial grid size=1/N

n = order of polynomial

(j-uB)evs ~O0n"")  (j-uB)vd~0n"?) (j-uB)ove ~On"™)

\/7BS a A a A O(h ) 7::|ogm|585| ?:loglg‘wﬂ ?HOT (logscale)
JeB' = oA ~O() S N
JeB =04, ~O(h"™ ]
Jg i ~ 0w
j9 ~ O(hn—2) —W420 H;Mng a

¢ O(hn_z) N (logscale)

Poincaré plot, =xn

Example of chaotic Beltrami field
in single given annulus; 7= """~ Y\ 7 s\

R=1.0+7r(%¢)cosd, . S RN y o 2NN -

Z=  r¢)sind, mw ks s RN

(m,n)=(3,1) island 5-
+(m,n) (2,1) island =——4=tpi11
= chaos =g

inner surface
r=0.1 _
outer interface ~\
r=0.2 +06[cos(29-¢) +cos(39-¢)]



Stepped-pressure equilibria accurately approximate

smoot

h-pressure axisymmetric equilibria

increasing pressure
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Pressure, p
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transform

in axisymmetric geometry . . .

— magnetic fields have family of nested flux surfaces
— equilibria with smooth profiles exist,
— may perform benchmarks (e.g. with VMEC)
(arbitrarily approximate smooth-profile with stepped-profile)
— approximation improves as number of interfaces increases

— location of magnetic axis converges w.r.t radial resolution

magnetic axis vs. radial resolution
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Equilibria with (1) perturbed boundary=chaotic fields,
and (11) pressure are computed .

zero-pressure equilibrium high-pressure equilibrium boundary deformation induces islands
B=0%

- Be4%

| R=1.0 +rcos$, Z=rsin$
: r=0.3+38c0s(29— @) + 5 cos(39— @)

Demonstrated convergence
with Fourier resolution
Convergence of (2,1) & (3,1) island widths
with Fourier resolution for f ~4% case
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Sequence of equilibria with increasing pressure shows
plasma can have significant response to external perturbation.

axisymmetric plus small perturbation
R =1.00+0.30cos(8)+0.05c0s(2%) + [J,,cos(28 )+ 0;,c08(38—¢)]cos(H)

Z =1.00+0.40sin(9) + [0,,c08(28 =)+ I, cos(39 =& )]sin(H)
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Summary

— A partially-relaxed, topologically-constrained energy principle has been presented
for MHD equilibria with chaotic fields and non-trivial (i.e. non-constant) pressure

— The model has been implemented numerically

* using a high-order (piecewise quintic) radial discretization
* an optimal (i.e. spectrally condensed) Fourier representation

* workload distrubuted across multiple cpus,
* extrema located using Newton’s method with quadratic-convergence

— Intuitively, the equilibrium model is an extension of Taylor relaxation to multiple volumes

— The model has a sound theoretical foundation

* solutions guaranteed to exist (under certain conditions)

— The numerical method 1s computationally tractable

* does not invert singular operators
* does not struggle to resolve fractal structure of chaos

— Convergence studies have been performed

* expected error scaling with radial resolution confirmed
* detailed benchmark with axisymmetric equilibria (with smooth profiles)
* that the 1sland widths converge with Fourier resolution has been confirmed






Toroidal magnetic confinement depends on flux surfaces

Transport in magnetized plasma dominately parallel to B
— 1f the field lines are not confined (e.g. by flux surfaces), then the plasma is poorly confined

Axisymmetric magnetic fields possess a continuously nested family of flux surfaces
— nested family of flux surfaces is guaranteed if the system has an ignorable coordinate

magnetic field is called integrable

—> rational ﬁeld—line = peI'iOdiC tI'aj eCtOI'y Sfamily of periodic orbits = rational flux surface

rational field-line 3= 0.3333... & ‘

— 1rrational field-lines cover irrational flux surface [ I *
magnetic field lines wrap around toroidal “flux” surfaces ST )

periodic poloidal angle 9

straight-field-line flux coordinates,
BVy =0

B=VyxV3+i(y)V{xVy
\/gB-V =0,+10, \

magnetic differential equation, BeV o = s, -
is singular at rational surfaces, (m 1— n) o, =i(\/g9),., periodic toroidal angle {

periodic poloidal angle 9




Ideal MHD equilibria are extrema of energy functional

The energy functional is

W = J‘V (p + Bz / 2) dv V = global plasma volume

1deal variations

mass conservation } 0;p+ V-( PV ) =0

state equation } di(pp’)=0

Faraday's law, 1deal Ohm's law } oB =V x (5 g X B) —ideal variations don’t allow field topology to change “frozen-flux”

the first variation in plasma energy is

Euler Lagrange equation for globally ideally-constrained variations

oW = IV (Vp ol ke B) -08 dv ideal-force-balance ~Vp = jx B
— two surface functions, e.g. the pressure, p(s), and rotational-transform = inverse-safety-factor, 1i(s),
and —a boundary surface (.. for fixed boundary equilibria. .. ),

constitute “boundary-conditions”  that must be provided to uniquely define an equilibrium solution
...... The computational task is to compute the magnetic field that is consistent with the given boundary conditions . . .

nested flux surface topology maintained by singular currents at rational surfaces

from Ve(oB + j ) = 0, parallel current must satisfy BeVo =-Vej ,  where j, =BxVp/ B’

i g Vi), S
— magnetic differential equations are singular at rational surfaces (periodic orbits) mmn + (m [—n )

— pressure-driven “Pfirsch-Schliiter currents” have 1/ x type singularity (ml - I’l)
— O - function singular currents shield out islands




Topological constraints :
pressure gradients coincide with flux surfaces

The ideal interfaces are chosen to coincide with pressure gradients

— parallel transport dominates perpendicular transport, —» structure of B and structure of the
. . . . pressure are intimately connected;
— simplest approximation is BeVp =0

— cannot apriori specify pressure without
— pressure gradients must coincide with KAM surfaces = ideal interfaces ~ @priori constraining structure of the field;

-10
[next order of approximation, B«Vp is small, e.g. o,p= /<”V|2|p + K‘LVip = 0, with K, > K ,¢eg. Kl/l(” ~10

*pressure gradients coincide with KAM surfaces, cantori . . .. )
— where there are significant pressure gradients,

1/4 . : : .
*pressure flattened across islands, chaos with width > Aw c ™ ( K| / KH ) there can be no islands or chaotic regions with width > Awc

* anisotropic diffusion equation solved analytically, p' oc 1/ (K‘”(pz +K lG) , @, 1s quadratic-flux across cantori, G is metric term]

A fixed boundary equilibrium 1s defined by :
(1) given pressure, p(y ), and rotational-transform profile, (y)
(i1) geometry of boundary;

(a) only stepped pressure profiles are consistent (numerically tractable) with chaos and BeVp =0
(b) the computed equilibrium magnetic field must be consistent with the input profiles
(a) + (b) = where the pressure has gradients, the magnetic field must have flux surfaces.

— non-trivial stepped pressure equilibrium solutions are guaranteed to exist



Taylor relaxation: a weakly resistive plasma will relax,

subject to single constraint of conserved helicity
Taylor relaxation, [Taylor, 1974]

W:J (p+B°12)dv, sz (A-B)dv
14 V

plasma energy helicity, B=VxA

Constrained energy functional F =W — uH /2, u=Lagrange multiplier
Euler-Lagrange equation, for unconstrained variations in magnetic field, VxB = uB

linear force-free field = Beltrami field

But, . . .Taylor relaxed fields have no pressure gradients

Ideal MHD equilibria and Taylor-relaxed equilibria are at opposite extremes . . . .

Ideal-MHD — imposition of mﬁn ity of ideal MHD constraints

non-trivial pressure profiles, but structure of field is over-constrained

Taylor relaxation — imposition of S n g [e constraint of conserved global helicity

structure of field is not-constrained, but pressure profile is trivial, i.e. under-constrained

We need something in between . . .
. . . perhaps an equilibrium model with ﬁnitely many ideal constraints, and partial Taylor relaxation?



Sequence of equilibria with increasing pressure shows

plasma can have significant response to external perturbation.

axisymmetric plus perturbation
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Introducing the multi-volume, partially-relaxed model of
MHD equilibria with topological constraints

Energy, helicity and mass integrals

B2
- ( Py jdv, | (amdv. M= | pa L
p\y-1 2 v, v,
. g , N . , N )
plasma energy helicity mass
Multi-volume, partially-relaxed energy principle a
* A set of N nested toroidal surfaces enclose N annulur volumes

— the interfaces are assumed to be ideal, 0B = V x (5?; X B)

* The multi-volume energy functional 1s

F:ZZI(VVI — /2_V1Mz)

— field remains tangential to interfaces,

Euler-Lagrange equation for unconstrained variations in A — afinite number of ideal constraints,
imposed topologically!

In each annulus, the magnetic field satisfies VxB, = /B,

Euler-Lagrange equation for variations in interface geometry

Across each interface, pressure jumps allowed, but total pressure is continuous [[p+ B’ / 21]=0

— an analysis of the force-balance condition is that the interfaces must have strongly irrational transform

ideal interfaces coincide with KAM surfaces



Sequence of equilibria with slowly increasing pressure

axisymmetric: R =1.00+0.30cos($)+0.05cos(29)
plus Z =1.00+0.40sin(9)

perturbation :0R =[5, cos(28 - )+ 0,,c08(38—¢)]cos(H)
1 0Z =[0,, cos(_28—§)+531 cos(3z9_—§)]sin(l_9)
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