
→  The simplest model of approximating global, macroscopic force-balance in toroidal plasma confinement 
with arbitrary geometry is magnetohydrodynamics (MHD).

→  Non-axisymmetric magnetic fields generally do not have a nested family of smooth flux surfaces, unless
ideal surface currents are allowed at the rational surfaces.

→  If the field is non-integrable (i.e. chaotic, with a fractal phase space), then any continuous pressure that 
satisfies B·∇p=0 must have an infinitely discontinuous gradient, ∇p.

→  Instead, solutions with stepped-pressure profiles are guaranteed to exist. A partially-relaxed, 
topologically-constrained, MHD energy principle is described.

→  Equilibrium solutions are calculated numerically. Results demonstrating convergence tests, benchmarks, 
and non-trivial solutions are presented.

→ The constraints of ideal MHD may be applied at the rational surfaces, in which case surface currents
prevent the formation of islands. Or, these constraints may be relaxed in the vicinity of the rational
surfaces, in which case magnetic islands will open if resonant perturbations are applied.

Theory and Numerics of the
Stepped Pressure Equilibrium Code

Stuart Hudson & R.L.Dewar, G.Dennis, M.J.Hole, M.McGann, G.vonNessi, S.Lazerson
collaboration between PPPL & Australian National University



→ transport of pressure along field is “infinitely” fast
→ no scale length in ideal MHD
→ pressure adapts to fractal structure of phase space
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Instead, a multi-region, relaxed energy principle for MHD 
equilibria with non-trivial pressure and chaotic fields



→ this was a strong motivation for pursuing the stepped-pressure equilibrium model

→ how large the “sufficiently small” departure from axisymmetry can be needs to be 
explored numerically 



By definition, an equilibrium code must constrain topology;
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Introducing the Stepped Pressure Equilibrium Code, SPEC
[Plasma Physics and Controlled Fusion, 54:014005, 2012]

, ,, , , ,R cos( ), sin( )* toroidal coordinates ( , , ),   *interface geometry 

* exploit gauge freedom   

The vector-potential is discretized using mixed Fourier & finite-elements
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Numerical error in Beltrami field scales as expected 

h = radial grid size = 1 / N
n = order of polynomial

Poincaré plot, ζ=0
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Stepped-pressure equilibria accurately approximate 
smooth-pressure axisymmetric equilibria 

magnetic fields have family of nested flux surfaces
equilibria with smooth profiles exist,
may perform benchmarks (e.g. with VMEC)
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Equilibria with       (i) perturbed boundary & chaotic fields, 
and       (ii) pressure are computed    .        
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axisymmetric boundary & pressure profile from experiment EFIT reconstruction, 1.5% ,
                                                                               ( Thanks to Ed Lazarus, Sam Lazers
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smooth EFIT pressure profile, 
(dotted curve is smooth pressure gradient)
and stepped pressure profile approximation

formation of magnetic islands
at rational surfaces

effect of RMP modelled by including (m,n)=(2,3), (3,3) & (4,3) boundary deformation, 
(in spectrally condensed angle, so this corresponds to broad m spectrum in magnetic coordinates),

at present      : can only treat stellarator-symmetric configurations, in fixed boundary;
for future work  : include up-down asymmetry; allow free boundary;



Example of ITER relevant configuration,
with and without rational shielding currents
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If ideal constraint applied at rational surfaces,  shielding currents prevent island formation
plus perturbation 

R Zδ δ ϑ φ ϑ δ δ ϑ φ ϑ= − = −
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WITHOUT rational ideal interface
q=2/1 island opens

Rational surface q=2/1





Summary 
→ A partially-relaxed, topologically-constrained energy principle has been described 
and the equilibrium solutions constructed numerically

* using a high-order (piecewise quintic) radial discretization, and a spectrally condensed Fourier representation
* workload distrubuted across multiple cpus,
* extrema located using standard numerical methods (NAG): modified Newton’s method, with quadratic-convergence
* non-axisymmetric solutions with chaotic fields and non-trivial pressure guaranteed to exist (under certain conditions)

→ Specifying the profiles discretely is a practical means of retaining some control over
the profiles, while making minimal assumptions regarding the topology of the field
* it is only assumed that some flux surfaces exist
* pressure gradients coincide with strongly irrational flux surfaces

→ Convergence studies have been performed
* expected error scaling with radial resolution confirmed
* detailed benchmark with axisymmetric equilibria (with smooth profiles)
* demonstrated convergence of island widths with Fourier resolution 

→ By enforcing the ideal constraint at the rational surfaces, the formation of magnetic 
islands is prohibited by the formation of surface “shielding” currents

* similar to non-linear generalization of IPEC
* relaxing ideal constraint at rational surfaces allows islands to open
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Equilibrium solutions when [[p+B ]]=0 across interfaces
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Instead, a multi-region, relaxed energy principle for MHD 
equilibria with non-trivial pressure and chaotic fields
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Sequence of equilibria with increasing pressure shows 
plasma can have significant response to external perturbation.
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Force balance condition at interfaces gives rise to auxilliary
pressure-jump Hamiltonian system.
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Sequence of equilibria with increasing pressure shows 
plasma can have significant response to external perturbation.
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Resonant radial field at rational surface;
n=1,2,3 stability from PEST;
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