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— The simplest model of approximating global, macroscopic force-balance in toroidal plasma confinement
with arbitrary geometry is magnetohydrodynamics (MHD).

— Non-axisymmetric magnetic fields generally do not have a nested family of smooth flux surfaces, unless
ideal surface currents are allowed at the rational surfaces.

— If the field is non-integrable (i.e. chaotic, with a fractal phase space), then any continuous pressure that
satisfies B-Vp=0 must have an infinitely discontinuous gradient, Vp.

— Instead, solutions with stepped-pressure profiles are guaranteed to exist. A partially-relaxed,
topologically-constrained, MHD energy principle is described.

— Equilibrium solutions are calculated numerically. Results demonstrating convergence tests, benchmarks,
and non-trivial solutions are presented.

— The constraints of ideal MHD may be applied at the rational surfaces, in which case surface currents
prevent the formation of islands. Or, these constraints may be relaxed in the vicinity of the rational
surfaces, in which case magnetic islands will open if resonant perturbations are applied.



An 1deal equilibrium with non-integrable (chaotic) field and

continuous pressure, 1s infinitely discontinous
ldeal MHD theory — Vp — jx B’ gives B Vp =0 —s transport of pressure along field is “infinitely” fast

— no scale length in ideal MHD
— pressure adapts to fractal structure of phase space

chaos theory = nowhere are flux surfaces continuously nested

*for non-symmetric systems, nested family of flux surfaces is destroyed
*1slands & irregular field lines appear where transform 1s rational (7 / m); rationals are dense in space
Poincare-Birkhoff theorem — periodic orbits, (e.g. stable and unstable) guaranteed to survive into chaos

*some 1rrational surfaces survive if there exists an r, k € R s.t. for all rationals. |i-n/m|>r m’

1.e. rotational-transform, ¢, is poorly approximated by rationals, Diophantine Condition
Kolmogorov, Arnold and Moser

k
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To have a well-posed equilibrium with chaotic B need to
—> introduce non-ideal terms, such as resistivity, 7, perpendicular diffusion, « , [HINT, M 3D, NIMROD,..],
— or return to an energy principle, but relax infinity of ideal MHD constraints



Instead, a multi-region, relaxed energy principle for ME
equilibria with non-trivial pressure and chaotic fields

. | \ ¢
Energy and helicity integrals (defined in nested volumes)
W, = j (—-i——jdv H, = j A B VvV, whee B=VXxA andeyzconst. ) 0
energy hellclty

Seek minimum-energy state, subject to constraint of conserved helicity: ' = ZZI (W, —wH,/2)

Allow for unconstrained variations 0 A and interface geometry, &,

except ideal "topological” constraint 6B =V x (& xB) imposed discretely at interfaces

Equilibrium solutions when V xB = gB in annuli, [[p+B*/2]]=0 across interfaces

— partial Taylor relaxation allowed in each annulus; allows for topological variations/islands/chaos ;
— global relaxation prevented by ideal constraints; —> non-trivial stepped-pressure equilibria !

— the solution to V X B = 14/B depends on interface geometry; solved in parallel in each volume;
— solving force balance = adjusting interface geometry to satisfy [[p+B*/2]]=0;

1deal interfaces that support pressure generally have irrational rotational-transform;

standard numerical problem finding zero of multi-dimensional function; call NAG routine;



Existence of Three-Dimensional Toroidal MHD
Equilibria with Nonconstant Pressure
OSCAR P. BRUNO PETER LAURENCE

California Institute of Technology  Universita di Roma "La Sapienza”

We establish an existence result for the three-dimensional MHD equations

(VXBYxB=Vp
V-B=0
B:-nlsgr=0

with_p # const in tori T without symmetry. More precisely, our theorems insure the existence of sharp
boundary solutions for tori whose departure from axisymmetry is sufficiently small; they allow for
solutions to be constructed with an arbitrary number of pressure jumps. € 1996 John Wiley & Sons, Inc.

Communications on Pure and Applied Mathematics, Vol. XLIX, 717-764 (1996)

— this was a strong motivation for pursuing the stepped-pressure equilibrium model

— how large the “sufficiently small” departure from axisymmetry can be needs to be
explored numerically



By definition, an equilibrium code must constrain topology:

Definition: Equilibrium Code (fixed boundary)

given (1) boundary (2) pressure (3) rotational-transform = inverse q-profile (or current profile)
— calculate B that 1s consistent with force-balance; pressure profile is not changed!
c.f. "coupled equilibrium - transport" approach, that evolves pressure while evolving field

Cannot apriori specify pressure without apriori constraining topology of the field
— the constraint B-Vp=0 means the structure of B and p are intimately connected;

if p 1s given and B that satisfies force balance is to be constructed,
then flux surfaces must coincide with pressure gradients; (e.g. if p is smooth, B must have nested surfaces).

— specifying the profiles discretely is a practical means of retaining some control
over the profiles, whilst making minimal assumptions regarding the topology;

— pressure gradients are assumed to coincide with a set of strongly-irrational ="noble" flux surfaces

Farey tree
noble irrational

= limit of alternating path down Farey-tree

= Fibonacci sequence
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Introducing the Stepped Pressure Equilibrium Code, SPEC
[Plasma Physics and Controlled Fusion, 54:014005, 2012]

The vector-potential is discretized using mixed Fourier & finite-elements

* toroidal coordinates (s,%,¢), *interface geometry R, = Zm R, cos(m8&-ng),Z, = Zm Z, , Sin(m3 = nd)

* exploit gauge freedom A = A4 (5,3, {)VI+ A4, (s5,9,0)VE

* Fourier A, =D as(s)cos(m8 - ng)
* Finite-element as(s) = Z s.(8)p(s)  piecewise cubic or quintic basis polynomials
l
: : : : N

and inserted into constrained-energy functional F' = ZH (W, — i,H, / 2)
* derivatives w.r.t. vector-potential - Beltrami field VxB = uB may be solved using (i) sparse linear solver,

) - o ‘ (ii) Newton methods
* field in each annulus computed independently, distributed across multiple cpus or (iii) minimization

* field in each annulus depends on enclosed toroidal flux (boundary condition) and

- poloidal flux 7 and hCliCity may adjust profiles to match (i) parallel current constraint ,
R ’ (ii) rotational-transform constraint
- geometry Of interfaCCS, & = {Rm s Zm ., } or (iii) helicity constraint

Force balance solved using multi-dimensional Newton method.

* interface geometry is adjusted to satisfy force F[E] = {[[p+ B’ / 2], } =0

* angle freedom constrained by spectral-condensation, adjust angle freedom to minimize (m” + nz) (ij + me )

* derivative matrix, VF[], computed in parallel using finite-differences minimal spectral width [Hirshman, VMEC]

* call NAG routine: quadratic-convergence w.r.t. Newton iterations; robust convex-gradient method;



Numerical error in Beltrami field scales as expected
Scaling of numerical error with radial resolution depends on finite-element basis

A=A,VI+A VS, B=VXA, j=VxB, need to quantify error = j - uB
AgaAg ~ O(hn) hiraZialg;'id;ize=.1;N
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sub-radial grid, N=16

Example of chaotic Beltrami field
in single given annulus;

R=1.0+r(9,{)cos Y,

Z = r(9,0)sin,  mm=(3,1) island
+ (m,n) (2,1) island
= chaos =

inner surface

r=0.1

outer interface

r=02 +5[cos(29-¢) +cos(39 - )]




Stepped-pressure equilibria accurately approximate

smoot

h-pressure axisymmetric equilibria

increasing pressure
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in axisymmetric geometry . . .

— magnetic fields have family of nested flux surfaces
— equilibria with smooth profiles exist,
— may perform benchmarks (e.g. with VMEC)
(arbitrarily approximate smooth-profile with stepped-profile)
— approximation improves as number of interfaces increases

— location of magnetic axis converges w.r.t radial resolution

magnetic axis vs. radial resolution
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Equilibria with (1) perturbed boundary & chaotic fields,
and  (11) pressure are computed .

Poincaré plot (cylindrical) Poincaré plot (cylindrical)
p =0%

B ~4% boundary deformation induces islands
I | I | | R=10 +rcos$, Z=rsin9
r=0.34+0cos(28—¢)+ O cos(33—¢)

5=10"

Demonstrated Convergence
of high-pressure equilibrium with islands,

with Fourier Resolution,

Convergence of (2,1) & (3,1) island widths ..
with Fourier resolution, f ~4% case
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Example calculation: DIIID with N=3 applied error field

— axisymmetric boundary & pressure profile from experiment EFIT reconstruction, £ = 1.5% ,
( Thanks to Ed Lazarus, Sam Lazerson . . .)
— apply 3mm, n=3 boundary deformation, with broad m spectrum

effect of RMP modelled by including (m,n)=(2,3), (3,3) & (4,3) boundary deformation,
(in spectrally condensed angle, so this corresponds to broad m spectrum in magnetic coordinates),

formation of magnetic islands

at present  : can only treat stellarator-symmetric configurations, in fixed boundary;
for future work : include up-down asymmetry; allow free boundary;

— strong pressure gradient near plasma edge
— 1if BeVp = 0, pressure gradients coincide with (irrational) flux surfaces

= 1irrational intefaces chosen to coincide with pressure gradients

smooth EFIT pressure profile,
(dotted curve is smooth pressure gradient)
and stepped pressure profile approximation

pressure

— relaxation, reconnection (i.e. island formation) is permitted,

— no rational "shielding currents" included in calculation.




Example of ITER relevant configuration,

with and without rational shielding currents

If ideal constraint applied at rational surfaces, shielding currents prevent island formation

ITER boundary, plus perturbation
OR =06cos(23—¢g)cos Y, 6Z = cos(29 —¢)sin 3

1.0

rotational transform
3
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Summary

— A partially-relaxed, topologically-constrained energy principle has been described

and the equilibrium solutions constructed numerically
* using a high-order (piecewise quintic) radial discretization, and a spectrally condensed Fourier representation

* workload distrubuted across multiple cpus,
* extrema located using standard numerical methods (NAG): modified Newton’s method, with quadratic-convergence

* non-axisymmetric solutions with chaotic fields and non-trivial pressure guaranteed to exist (under certain conditions)

— Specifying the profiles discretely 1s a practical means of retaining some control over
the profiles, while making minimal assumptions regarding the topology of the field

* 1t 1s only assumed that some flux surfaces exist
* pressure gradients coincide with strongly irrational flux surfaces

— Convergence studies have been performed
* expected error scaling with radial resolution confirmed
* detailed benchmark with axisymmetric equilibria (with smooth profiles)
* demonstrated convergence of island widths with Fourier resolution
— By enforcing the ideal constraint at the rational surfaces, the formation of magnetic

islands is prohibited by the formation of surface “shielding” currents

* similar to non-linear generalization of IPEC
* relaxing ideal constraint at rational surfaces allows islands to open



Instead, a multi-region, relaxed energy principle for ME
equilibria with non-trivial pressure and chaotic fields

Energy, helicity and mass integrals (defined in nested volumes) \ y
W, = j (—+—jdv H, = j (A-B)dv, M,:I p7dv
: )
\%/_J 0
energy hellClty mass

N
Seek constrained, minimum-energy state | [ = Z l:l(VVl — 'UZH / /2 _VZM l)

1st variation due to unconstrained variations op, OA, and interface geometry, &,

except ideal "topological” constraint 6B = V x (& xB) imposed discretely at interfaces

5F=Z§L{IV[ -

pV7 —;/p/(y—l) const.
in each annulus

Equilibrium solutions when VxB = z,B in annuli, [[p+B*/2]]=0 across interfaces

1/y-1

j5p dv+le§A-(vXB—y,B)dv—jaVl [[p+B°/2]] g.ds}

- continuity of total pressure
VXB=,LIIB in each annulus across interfaces

— partial Taylor relaxation allowed in each annulus; allows for topological variations/islands/chaos;
— global relaxation prevented by ideal constraints; — non-trivial stepped — pressure solutions;
— the solution to VxB = 1, B depends on interface geometry; solved in parallel locally in each annulus;

— solving force balance = adjusting interface geometry to satisfy [[p+B*/2]]=0;
ideal interfaces that support pressure generally have irrational rotational-transform,;

standard numerical problem finding zero of multi-dimensional function; call NAG routine;



Sequence of equilibria with increasing pressure shows
plasma can have significant response to external perturbation.

axisymmetric plus small perturbation
R =1.00+0.30cos(8)+0.05cos(2%) + [J,,cos(28 )+ 0;,co8(38—¢)]cos(H)
Z =1.00+0.40sin(9) + [0,,c08(28 =)+ I, cos(39 =& )]sin(H)
‘ l ﬂtolt ® 0"000_ e | I ‘ | ﬂtot‘ ~ 0.0|18 .
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| p= 0.000 IFl-1.e—12[" | | (3,1) island
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Force balance condition at interfaces gives rise to auxilliary
pressure-jump Hamiltonian system.

— Beltrami condition, V x B = B, and interface constraint, B-n =0, gives VxB-Vs =0,
suggests surface potential, By =0,f, B, =0,f, sothatd,B, —0,B, =0,
B = (gggfgfg - Zg,szgfgfg T gggfgf,g)/(gwggg - g,ggggg)a metric elements g, = 0, X0 5X
— Force balance condition, [[p+ B*/2]]=0, introduce H =2(p, - p,) = B, — B, = const.
— Let tangential field on "inner-side" of interface be given, B, =0,f, B, =0,f,

tangential field on "outer-side", B,, = p,, B,. = p,, determined by characteristics

. BH(3,¢,pyspy) . 0H . 0H . oH
9= s Pe—~ <> é/:—a pgz' ~
op, 09 op; o;

— 2 d.o.f. Hamiltonian system, and invariant surfaces only exist if "frequency" is irrational

¢.Pg>P¢

—> 1deal interfaces that support pressure must have irrational transform

Hamilton-Jacobi theory for continuation of magnetic field across a toroidal surface supporting a plasma

pressure discontinuity
M. McGann, S.R.Hudson, R.L. Dewar and G. von Nessi, Physics Letters A, 374(33):3308, 2010



Sequence of equilibria with increasing pressure shows

plasma can have significant response to external perturbation.

axisymmetric plus perturbation
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