Multi-Region, relaXed MHD (MRXMHD)

global, continuous topological constraint]
2

Classic MHD: W = (—+B7j dv, ideal variations 5B =V x(£xB);

energy
1st variation = 0: Vp=jxB ; 2nd variation gives ideal stability;
Taylor Relaxation: ~ F=W + g(H —-H,), H :I (A-B)dv; %[NO topological Constraint]
Y

helicity
1st variation = 0: VxB = uB ; no pressure gradient;

<[ discrete topological constraint ]

MRXMHD: F = Z[W +/‘I (H, —H, )1 ;

— ideal mterfaces = flux surfaces forced to coincide with pressure gradients;
1st variation = 0: VxB = uB, [[p+B®/2]]=0 ; ) 0
2nd variation gives |ideal/resistive stability of partially chaotic equilibria




Existence of Three-Dimensional Toroidal MHD
Equilibria with Nonconstant Pressure
OSCAR P. BRUNO PETER LAURENCE

California Institute of Technology  Universita di Roma "La Sapienza”

We establish an existence result for the three-dimensional MHD equations

(VXBYxB=Vp
V-B=0
B:-nlsgr=0

with_p # const in tori T without symmetry. More precisely, our theorems insure the existence of sharp
boundary solutions for tori whose departure from axisymmetry is sufficiently small; they allow for
solutions to be constructed with an arbitrary number of pressure jumps. € 1996 John Wiley & Sons, Inc.

Communications on Pure and Applied Mathematics, Vol. XLIX, 717-764 (1996)

— this was a strong motivation for pursuing the stepped-pressure equilibrium model

— how large the “sufficiently small” departure from axisymmetry can be needs to be
explored numerically



Stepped Pressure Equilibrium Code, SPEC

[Plasma Physics and Controlled Fusion, 54:014005, 2012]

The vector-potential is discretized using mixed Fourier & finite-elements

geometry R, = Zm’n R mncos(Md—ng), Z, = Z Z, oo sSIiN(M3 —ng)
A=A(s,9)VI+A(s,8)VS

A, = Zm'n as(s) cos(mP — n¢)
as(s) = ). s.1(3)(s)
and inserted into constrained-energy functional F = Z.N: (W =4 H,12)

* derivatives w.r.t. vector-potential —» Beltrami field V xB = uB

Force balance solved using multi-dimensional Newton method.

* interface geometry is adjusted to satisfy force F[&] = {[[p+ B / 211, 5 =0
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converges as It should . . . .

1) Radial resolution convergence,
2) Fourier resolution convergence,
3) Converges to Grad-Shafranov for axisymmetric case
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Equilibrium
(work In progress)

plasma supported by
vacuum provided by colls;

generalized boundary
condition at
computational wall
allows for

unstable manifold,;
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