How do chaotic magnetic fields confine plasma equilibria?

Stuart R. Hudson

Princeton Plasma Physics Laboratory

Grand Challenge of Magnetic Plasma Confinement

is to create sustainable energy

• Need to confine a **hot**, **dense** plasma (ionized gas) for a **long time**

We need to confine the plasma in a stable equilibrium.

• Macroscopic force balance = Lorentz force balances gas pressure

simplest equilibrium equation is $\nabla p = \mathbf{j} \times \mathbf{B}$

The calculation of the equilibrium is fundamental.

Both particle transport studies, and stability calculations, depend on the equilibrium calculation

[→] pointless to follow *microscopic* particle trajectories if the *macroscopic* forces are not balanced

 \rightarrow to determine the stability of an equilibrium, first the equilibrium state must be known

→ **many plasma disruptions etc. are caused by the lack of a stable, equilibrium state → experimental design "begins" with an equilibrium calculation**

 $\mathbf{F} = q \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right)$

Axisymmetric toroidal fields have "nested" flux-surfaces, and flux surfaces are good for confinement

• Because (1) there are no magnetic monopoles, (2) and the "hairy" ball theorem, (3) Noether's theorem, **in toroidal, axisymmetric fields (i.e. an idealized tokamak), the field lines wrap around on nested, magnetic flux surfaces**.

> $\omega \equiv \equiv$ $\omega = \frac{\Delta \theta}{\Delta \phi}$

each surface characterized by frequency

if ω is **rational** , i.e. $\omega = n/m$, the field line is "closed", i.e. "periodic" if ω is **irrational**. the field line will come arbitrarily close to every point on the surface

- •This is great for confinement \rightarrow the field lines lie on surfaces
	- \rightarrow the particles are tied to the field lines

θ

 \rightarrow <u>the pressure is constant on flux surfaces,</u> $p=p(s)$

φ

θ

• $\nabla p = \mathbf{j} \times \mathbf{B}$ is easy to solve <u>because the equilibrium is smooth</u> (1) calculate equilibrium (2) determine stability (3) study particle transport if $\frac{\partial}{\partial A} = 0$, i.e. two-dimsional, then $\nabla p = \mathbf{j} \times \mathbf{B}$ reduces to the Grad-Shafranov equation

But, non-axisymmetric (3D) perturbations introduce *chaos*

→ the smooth, continuously-nested family of flux-surfaces is *"broken"* → the equilibrium is greatly complicated, becomes the equilibrium becomes *fractal*

With increasing non-axisymmetry, the flux surfaces become increasingly "broken"

- Invariant flux surfaces are destroyed near "resonances", $\omega = n/m$, n, m are integers construction of action-angle coordinates for perturbed system fails because of "small-denominators"
- Magnetic islands (resonance zones) form chaotic, "irregular" field lines emerge, that wander **seemingly randomly** over a volume
- Confinement deteriorates, **the pressure is flat inside islands and chaos**

- •The calculation of three-dimensionalpartially-chaotic equilibria must
- 1) Be consistent with theoretical plasma physics
- 2) Be consistent with experimental results
- **3) Be consistent with Hamiltonian chaos theory**
- **4) employ numerical methods that accommodate fractals**

WHERE TO START? START WITH CHAOS

The fractal structure of chaos is related to the structure of numbers

THEN, ADD PLASMA PHYSICS

Force balance means the pressure is a *"fractal staircase"*

- • $\nabla p = \mathbf{j} \times \mathbf{B}$, implies that *i.e.* pressure is constant along a field line
- •Pressure is flat across the rationals (assuming no "pressure" source inside the islands) *[→] islands and chaos at every rational [→] chaotic field lines wander about over a volume*

• Pressure gradients supported on the "most-irrational" irrationals *[→] surviving "KAM" flux surfaces confine particles and pressure*

Diophantine Pressure Profile

is it pathological?

Q) How do non-integrable fields confine field lines? A) Field line transport is restricted by KAM surfaces and cantori

- → *KAM surfaces are closed, toroidal surfaces; and stop radial field line transport*
- → *Cantori have many holes, but still cantori can severely "slow down" radial field line transport*
- → *Example, all flux surfaces destroyed by chaos, but even after 100 000 transits around torus the field lines cannot get past cantori*

Simplified Diagram of the structure of integrable fields, [→]showing continuous family of invariant surfaces

Action-angle coordinates can be constructed for "integrable" fields

- the "action" coordinate coincides with the invariant surfaces
- dynamics then appears simple

Are ghost-surfaces quadratic-flux minimizing? S.R. Hudson & R.L. Dewar, Physics Letters A 373:4409, 2009

Unified theory of Ghost and Quadratic-Flux-Minimizing Surfaces R.L. Dewar, S.R. Hudson & A.M. Gibson Journal of Plasma and Fusion Research SERIES, 9:487, 2010

Chaotic coordinates can be constructed

- coordinate surfaces are adapted to the <u>fractal hierarchy of remaining invariant sets</u>
- ghost surfaces ≡ quadratic-flux minimizing surfaces are "almost-invariant"
- dynamics appears "almost-simple"

Chaotic coordinates "straighten out" chaos

phase-space is partitioned into (1) regular ("irrational") regions with "good flux surfaces", temperature gradients **and (2) irregular (" rational") regions** with islands and chaos, flat profiles

Generalized magnetic coordinates for toroidal magnetic fields S.R. Hudson, Doctoral Thesis, The Australian National University, 1996

Chaotic coordinates simplify anisotropic transport

The temperature is constant on ghost surfaces, *T=T(s)*

Non-axisymmetric (i.e. three-dimensional) experiments designed to have "good-flux-surfaces"

- The construction of **ghost-surfaces** ≡ **quadratic-flux minimizing surfaces** provides an easy-to-calculate measure of the island size
- Standard numerical optimization methods can be used to **design non-axisymmetric experiments with "good flux surfaces"**
- Example : In the design of the **National Compact Stellarator Experiment** (NCSX), small changes in the coil geometry were used to **remove resonant error fields**

1958 An Energy Principle for hydromagnetic stability problems

I.B. Bernstein, E.A. Freiman, M.D. Kruskal & R.M. Kulsrud

$$
W \equiv \int_V \left[\frac{p}{\gamma - 1} + \frac{B^2}{2} \right] dv
$$

plasma displacement

ideal plasma response

$$
\mathbf{x} \to \mathbf{x} + \xi
$$

\n
$$
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \mathbf{E}, \quad \mathbf{E} + \mathbf{v} \times \mathbf{B} = 0,
$$

\n
$$
\delta \mathbf{W} = \int_{V} (\nabla p - \mathbf{j} \times \mathbf{B}) \cdot \xi \ d\nu
$$

1958 An Energy Principle for hydromagnetic stability problems

I.B. Bernstein, E.A. Freiman, M.D. Kruskal & R.M. Kulsrud

$$
W \equiv \int_V \left[\frac{p}{\gamma - 1} + \frac{B^2}{2} \right] dv
$$

plasma displacement

ideal plasma response

$$
\mathbf{x} \to \mathbf{x} + \xi
$$

\n
$$
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \mathbf{E}, \quad \mathbf{E} + \mathbf{v} \times \mathbf{B} = 0,
$$

\n
$$
\delta \mathbf{W} = \int_{V} (\nabla p - \mathbf{j} \times \mathbf{B}) \cdot \xi \ d\nu
$$

1954 KAM theorem

1962 A.N. Kolmogorov (1954), J. Moser (1962), V.I. Arnold (1963)

1967 Toroidal confinement of plasma

H. Grad *"very pathological pressure distribution" islands and chaos not allowed by ideal variations*

dense set of singular currents plasma variations are over constrained

1958 An Energy Principle for hydromagnetic stability problems

I.B. Bernstein, E.A. Freiman, M.D. Kruskal & R.M. Kulsrud

$$
W \equiv \int_{V} \left[\frac{p}{\gamma - 1} + \frac{B^2}{2} \right] dv
$$

plasma displacement

ideal plasma response

$$
\mathbf{x} \to \mathbf{x} + \xi
$$

\n
$$
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \mathbf{E}, \quad \mathbf{E} + \mathbf{v} \times \mathbf{B} = 0,
$$

\n
$$
\delta \mathbf{W} = \int_{V} (\nabla p - \mathbf{j} \times \mathbf{B}) \cdot \xi \ d\nu
$$

1954 KAM theorem

1962 A.N. Kolmogorov (1954), J. Moser (1962), V.I. Arnold (1963)

1967 Toroidal confinement of plasma

H. Grad *"very pathological pressure distribution" islands and chaos not allowed by ideal variations*

dense set of singular currents plasma variations are over constrained

19833D ideal equilibrium codes

1984 BETA Garabedian et al., VMEC Hirshman et al. *minimize W allowing ideal variations* (other "codes" that are ill-posed, include non-ideal effects,…) *do not allow islands & chaos*

cannot resolve singular currents, fail to converge

(If you don't get the mathematics correct, the "numerics" won't work.)

1958 An Energy Principle for hydromagnetic stability problems

I.B. Bernstein, E.A. Freiman, M.D. Kruskal & R.M. Kulsrud

plasma displacement

ideal plasma response

2

1 2

—
−1

 $\equiv \int_V \left[\frac{p}{\gamma - 1} + \frac{B^2}{2} \right]$

 $\left|\frac{p}{\gamma-1}+\frac{B^2}{2}\right|dv$

 $W \equiv \int_V$

1954 KAM theorem

1962 A.N. Kolmogorov (1954), J. Moser (1962), V.I. Arnold (1963)

1967 Toroidal confinement of plasma

H. Grad *"very pathological pressure distribution" islands and chaos not allowed by ideal variations*

dense set of singular currents plasma variations are over constrained

19833D ideal equilibrium codes

1984BETA Garabedian et al., VMEC Hirshman et al. *minimize W allowing ideal variations*

do not allow islands & chaoscannot resolve singular currents, fail to converge

IDEAL VARIATIONS OVERLY CONSTRAIN THE TOPOLOGY, LEAD TO A DENSE SET OF SINGULARTIES HOWEVER, IF THE VARIATION IS UNCONSTRAINED, THEN THE MINIMIZING STATE IS TRIVIAL i.e. vacuum.

Q) What constrains a weakly resistive plasma? A) Plasmas cannot easily untangle themselves

HYPOTHESIS OF TAYLOR RELAXATION

 \rightarrow Weakly resistive plasmas will relax to minimize the energy (and some flux surfaces may break), but the plasma cannot easily "untangle" itself i.e. constraint of conserved helicity

→Minimize *W* = *Energy*, subject to constraint of conserved *H* = *Helicity* = *H*₀

→Taylor relaxed state is a linear force free field, $\nabla \times \mathbf{B} = \mu \mathbf{B}$

Multi-Region, Relaxed MHD is a generalization of ideal MHD and Taylor relaxation

Step 1 : partition the plasma into N nested volumes (allows for non-trivial global pressure)

2

 $V_i \setminus V = 1 \quad Z \quad J$

Step 2 : define Energy and Helicity integrals (local to each volume)

 $\left(\begin{array}{cc} p & B^2 \end{array}\right)$

γ

=

$$
W_{l} = \int_{V_{l}} \left(\frac{p}{\gamma - 1} + \frac{B^{2}}{2} \right) dv, \quad H_{l} = \int_{V_{l}} (\mathbf{A} \cdot \mathbf{B}) dv, \quad \text{where } \mathbf{B} = \nabla \times \mathbf{A} \text{ and } pV^{\gamma} = \text{const.}
$$

Step 3 : construct **multi-region, relaxed MHD energy functional**, called **MRXMHD** energy helicity

 $F \equiv \sum_{l} \left[W_{l} - \frac{\mu}{2} \left(H_{l} - H_{l,o} \right) \right]$

 $\big(\mathbf{A}\cdot\mathbf{B}\big)$

Step 4 : The extremizing solutions satisfy the Euler-Lagrange equations

 $\overbrace{\hspace{2.5cm}}$ and $\overbrace{\hspace{2.5cm$

rotational-transform on ideal interfaces is a Fibonacci irrational

 $\nabla \times \mathbf{B}_l = \mu_l \mathbf{B}_l$ [[p+B²/2]] = 0

Bruno & Laurence, 1996 stepped pressure equilibria are guaranteed to exist

Step 5 : Numerical implementation, **Stepped Pressure Equilibrium Code (SPEC),**

(1) uses mixed Fourier, finite-element representation for magnetic vector potential, *A*, and geometry (2) calculation parallelized over volumes

continuity of total pressure across volume interfaces

(3) exploits spectral condensation algorithm (4) exploits sparse linear structure of $\nabla \times \mathbf{B} = \mu \mathbf{B}$

(5) pre-conditioned conjugate gradient methods and/or globally convergent Newton method

relaxed Taylor state in each volume

(6) online documentation (7) graphical user interface

Computation of multi-region relaxed magnetohydrodynamic equilibria S.R. Hudson, R.L. Dewar, G. Dennis, M.J. Hole, M. McGann, G.von Nessi and S. Lazerson, Physics of Plasmas, 19:112502, 2012 Invited Talk 20th International Toki Conference, 2010 Invited Talk 38th European Physical Society Conference on Plasma Physics, 2011 Invited Talk 18th International Stellarator/Heliotron Workshop, 2012

The Stepped Pressure Equilibrium Code (SPEC), has excellent convergence properties

• **First 3D equilibrium code to**

- 1.allow islands & chaos,
- 2.have a solid mathematical foundation,
- 3.give excellent conver gence,

Poincaré Plot (of convergence calculation) (axisymmetric equilibrium plus resonant perturbation)

Equilibrium reconstruction of 3D plasmas is where "theory meets experiment"

•**Consider a DIIID experimental shot, with applied three-dimensional "error fields"**

(used to suppress edge instabilities)

• **Vary the equilibrium parameters until "numerical" diagnostics match observations**

• **SPEC is being incorporated into the "STELLOPT" equilibrium reconstruction code**

by Dr. S. Lazerson, a post-doctoral fellow at Princeton Plasma Physics Laboratory

3D Equilibrium Effects due to RMP application on DIII-D S. Lazerson, E. Lazarus, S. Hudson, N. Pablant, D. Gates 39th European Physical Society Conference on Plasma Physics, 2012

(i.e. plasma boundary, pressure and current profiles), (e.g. Thomson scattering, motional Stark effect polarimetry, magnetic diagnostics)

experimental reconstruction using SPEC

MRXMHD explains self-organization of Reversed Field Pinch into internal helical state

EXPERIMENTAL RESULTS

Overview of RFX-mod results

P. Martin et al., *Nuclear Fusion, 49 (2009) 104019*

Fig.6. Magnetic flux surfaces in the transition from a QSH state . . to a fully developed SHAx state . . The Poincaré plots are obtained considering only the axisymmetric field and dominant perturbation"

NUMERICAL CALCULATION USING STEPPED PRESSURE EQUILIBRIUM CODE Taylor r elaxation and reversed field pinches

G. Dennis, R. Dewar, S. Hudson, M. Hole, 2012 20th Australian Institute of Physics Congress

Excellent Qualitative agreement between numerical calculation and experiment

 \rightarrow this is first (and perhaps only?) equilibrium model able to explain internal helical state with two magnetic axes \rightarrow publication presently being prepared by Dr. G Dennis, a post-doctoral fellow at the Australian National University

nature **August, 2009** physics

Reversed-field pinch gets self-organized

1958 An Energy Principle for hydromagnetic stability problems

I.B. Bernstein, E.A. Freiman, M.D. Kruskal & R.M. Kulsrud

1954 KAM theorem

1962 A.N. Kolmogorov (1954), J. Moser (1962), V.I. Arnold (1963)

1967 Toroidal confinement of plasma

H. Grad*"very pathological pressure distribution"*

1974 Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields J.B. Taylor *relax the ideal constraints, include helicity constraint* $\big(\mathbf{A}\cdot\mathbf{B}\big)$ *V* $H = \int (A \cdot B) dv$ $\int_V (\mathbf{A} \cdot \mathbf{B})$

1996 Existence of Three-Dimensional Toroidal MHD equilibria with Nonconstant Pressure 1996 Existence of Three-Dimensional Toroidal MHD equilibria with Nonconstant Pressure

O.P. Bruno & P. Laurence *". . . our theorems insure the existence of sharp boundary solutions . . ."* O.P. Bruno & P. Laurence *". . . our theorems insure the existence of sharp boundary solutions . . ." i.e. stepped pressure equilibria are well defined i.e. stepped pressure equilibria are well defined*

 $\nabla \times \mathbf{B}_l = \mu_l \mathbf{B}_l \quad \left[\left[p + B^2 / 2 \right] \right] = 0$

 $F \equiv \sum_{l} (W_{l} - \mu_{l} H_{l} / 2)$

2012 Computation of Multi-Region, Relaxed Magnetohydrodynamic Equilibria

S.R. Hudson, R.L. Dewar et al. • *chaotic equilibria with arbitrary pressure*

- *combines ideal MHD and Taylor relaxation*
- *for N →* [∞]*, recover globally-constrained, ideal MHD*

for N=1, recover globally-relaxed Taylor force-free state

2 1 2 $W \equiv \int_V$ $\left|\frac{p}{\gamma-1}+\frac{B^2}{2}\right|dv$ —
_1 $\equiv \int \left[\frac{p}{\mu} + \frac{B^2}{2} \right]$ $\int_V \left[\frac{p}{\gamma-1}+\frac{B^2}{2}\right]$

Ongoing research activities

- **1. Compute "free-boundary", partially-chaotic equilibria that are supported by vacuum fields with a chaotic-tangle**
	- •investigate structure of chaotic-tangle that surrounds a high-pressure plasma
	- •explore relationship between cantori and unstable manifold near plasma edge
	- •explore how transport through chaotic edge is restricted by cantori
- **2. Is the suppression of edge-localized modes by partial chaos a manifestation of multi-region, relaxed MHD instability phenomena?**
	- •MRXMHD allows the stability of partially chaotic equilibria to be defined and calculated
	- •to what extent do applied error fields ergodize the plasma edge?
	- •can experimental disruptions be understood using multi-region, relaxed MHD?

3. Equilibrium reconstruction calculations

- •can numerical calculations predict experimental observations?
- •which equilibrium model best fits experiment?

4.Development of transport model

•how do charged particles move through partially-chaotic, stepped-pressure equilibria?

5.Compute "critical-pressure gradient", explore avalanche phenomena

- •what is the most pressure a flux surface can support before it is destroyed?
- •do all the flux-surfaces collapse simultaneously (i.e. avalanche) when pressure exceeds a certain threshold?

Existence of Three-Dimensional Toroidal MHD Equilibria with Nonconstant Pressure

OSCAR P. BRUNO

PETER LAURENCE

California Institute of Technology Universita di Roma "La Sapienza"

We establish an existence result for the three-dimensional MHD equations

 $(\nabla \times \mathbf{B}) \times \mathbf{B} = \nabla p$ $\nabla \cdot \mathbf{B} = 0$ $\mathbf{B}\cdot n|_{\partial T}=0$

with $p \neq$ const in tori T without symmetry. More precisely, our theorems insure the existence of sharp boundary solutions for tori whose departure from axisymmetry is sufficiently small; they allow for solutions to be constructed with an arbitrary number of pressure jumps. © 1996 John Wiley & Sons, Inc.

Communications on Pure and Applied Mathematics, Vol. XLIX, 717–764 (1996)

With increasing non-axisymmetry, the flux surfaces become increasingly "broken"

1. The transformation to action-angle coordinates fails where frequency $\omega = n/m$, is rational **classical problem of small denominators**, resonance zones ~ magnetic islands

invariant flux surfaces are destroyed separatrix splitting, *chaotic "tangle"*

A plasma is a gas of charged particles

PI ASMA

- *1. electrically conducting, need to consider plasma currents, j*
- *2.electric fields are shielded,* $\vec{E} \approx 0$
- *3. plasmas display "collective" behaviour, i.e. waves and oscillations*

The "physics" of magnetic confinement is based on the *Lorentz* **force**

Several theorems of mathematics & theoretical physics, prove that . . .

- 1. There are no magnetic monopoles ... i.e. ∇•**B** = 0, *magnetic field lines have "no end"*
- 2. The hairy ball theorem (of algebraic topology) *there is no nonvanishing continuous tangent vector field on a sphere, but there is on a torus!*

3. Noether's theorem (of theoretical physics) e.g. if the system does not depend on the angle, the angular momentum is constant *each symmetry (i.e. ignorable coordinate) of a Hamiltonian system has a integral invariant* action integral $J = \oint pdq$, "integrable" Hamiltonian, $H(J)$ $-\rightarrow 0$, frequency $\omega =$ the action is constant and the angle increases linearly with time *dJ* ∂H ∂H dt $\partial \theta$ ∂J θ = 0, frequency ω ∂*H* ∂ \equiv – \equiv = 0, requency $\omega \equiv$ $\partial \theta$ $\qquad \qquad \partial$

4. Toroidal magnetic fields are Hamiltonian *can use all the methods of Hamiltonian and Lagrangian mechanics!*

$$
\mathbf{B} = \nabla \times \mathbf{A}
$$
 Action Integral $S = \int_C L(\theta, \dot{\theta}, t) dt$

 $\mathbf{B} = \nabla \times (\psi \nabla \theta - \chi \nabla \phi + \nabla gauge)$

field line satisfies Hamilton's Equations $\begin{vmatrix} d\theta & \frac{\partial \chi}{\partial \phi} = \frac{\partial \chi}{\partial \psi} , \quad \frac{d\psi}{d\phi} = -\frac{\partial \chi}{\partial \theta} \end{vmatrix}$ $S = \int_C A$. $\partial \phi$ $\partial \psi$ $d\phi$ $\partial \theta$ $=\frac{\partial \chi}{\partial \psi}$, $\frac{d\psi}{d\phi} = -\frac{\partial \chi}{\partial \theta}$ $S =$

 $S = \int_C A \cdot dI$

 ψ = *canonical* momentum *Hamiltonian* χ ≡

 $\mathbf{B} = \nabla \times \mathbf{A}$

Trajectories are extremal curves of action-integral

Theorems from Hamiltonian chaos theory provide a solid foundation

1. Poincaré-Birkhoff Theorem

 magnetic field-line action = *curve* $\int_{curve} \mathbf{A} \cdot \mathbf{dl}$

curves that extremize the action integral are field lines

For every rational, $\omega = n/m$, where n, m are integers,

- •a periodic field-line that is a *minimum* of the action integral will exist
- •a *saddle* will exist

2. Aubry-Mather Theorem

For every $\omega \neq n/m$,

• there exists an "irrational" field-line that is a *minimum* of the action integral

3. Kolmogorov-Arnold-Moser Theorem

- ω is very irrational if there exist an r, k such that $|\omega n/m| > r m^{-k}$, for all integers n, m • if ω is very irrational then the Aubry-Mather field line will cover a surface, called a KAM surface *Diophantine condition*
- if not, the Aubry-Mather field line will cover a Cantor set, called a cantorus

4. Greene's residue criterion

• *the existence of a KAM surface is related to the stability of the nearby Poincaré-Birkhoff periodic orbits*

An ideal equilibrium with non-integrable (*chaotic)* field and

continuous pressure, is *infinitely discontinous*

 $ideal$ MHD theory = $\nabla p = \mathbf{j} \times \mathbf{B}$, gives $\mathbf{B} \cdot \nabla p = 0$

[→] transport of pressure along field is "infinitely" fast [→] no scale length in ideal MHD

[→] pressure adapts to fractal structure of phase space

chaos theory *nowhere are flux surfaces continuously nes ted* =

*islands & irregular field lines appear where transform is rational (n/m) ; rationals are dense in space *for non-symmetric systems, nested family of flux surfaces is destroyed Poincare-Birkhoff theorem \rightarrow periodic orbits, (e.g. stable and unstable) guaranteed to survive into chaos *some irrational surfaces survive if there exists an r, $k \in \mathbb{R}$ s.t. for all rationals, $|i - n / m| > r m^{-k}$ *i.e.* rotational-transform, *i*, is *poorly approximated* by rationals, *Diophantine Condition*

Kolmogorov, Arnold and Moser

To have a well-posed equilibrium with chaotic **B** need to

 \rightarrow introduce non-ideal terms, such as resistivity, η , perpendicular diffusion, κ_{\perp} , [HINT, M3D, NIMROD,..],

 \rightarrow or return to an energy principle, but relax infinity of ideal MHD constraints

Extrema of energy functional obtained numerically; introducing the Stepped Pressure Equilibrium Code (SPEC)

The vector-potential is discretized

* toroidal coordinates (s, ϑ, ζ) , *interface geometry $R_{l} = \sum_{m,n} R_{l,m,n} \cos(m\vartheta - n\zeta), Z_{l} = \sum_{m,n} Z_{l,m,n} \sin(m\vartheta - n\zeta)$ * exploit gauge freedom $A = A_{\rho}(s, \theta, \zeta) \nabla \theta + A_{\zeta}(s, \theta, \zeta) \nabla \zeta$ * Fourier and inserted into constrained-energy functional $F = \sum_{l=1}^{N} (W_l - \mu_l H_l / 2 - v_l M_l)$ * Finite-element $a_{s(s)} = \sum_{i} a_{s_{s}}(s) \varphi(s)$ piecewise cubic or quintic basis polynomials $A_g = \sum_{m,n} a_s(s) \cos(m\theta - n\zeta)$ * derivatives w.r.t. vector-potential \rightarrow linear equation for Beltrami field $\nabla \times \mathbf{B} = \mu \mathbf{B}$ $F = \sum_{l=1}^{n} (W_l - \mu_l H_l / 2 - \nu_l M_l)$ $=\sum\nolimits_{l=1}^{N}\bigl(W_{l}-\mu_{l}H_{l}^{-}/\,2-\right.$ * field in each annulus depends on enclosed toroidal flux (boundary condition) and * field in each annulus computed independently, distributed across multiple cpus \rightarrow geometry of interfaces, $\xi = \left\{ R_{m,n}, Z_{m,n} \right\}$ \rightarrow poloidal flux, ψ_p , and helicity-multiplier, μ * interface geometry is adjusted to satisfy force $\mathbf{F}[\xi] = \{ [[p + B^2/2]]_{m,n} \}$ Force balance solved using multi-dimensional Newton method. * angle freedom constrained by spectral-condensation, adjust angle freedom to minimize $\sum (m^2 + n^2) (R_{mn}^2 + Z_{mn}^2)$ ace geometry is adjusted to satisfy force $F[\xi] \equiv \{ [[p + B^2 / 2]]_{m,n} \} = 0$ * derivative matrix, $\nabla F[\xi]$, computed in parallel using finite-differences *minimal spectral width [Hirshman, VMEC] solved using sparse linear solver adjusted so interface transform is strongly irrational*

* call NAG routine: quadratic-convergence w.r.t. Newton iterations; robust convex-gradient method;

Numerical error in Beltrami field scales as expected

Scaling of numerical error with radial resolution depends on finite-element basis

Stepped-pressure equilibria accurately approximate smooth-pressure *axisymmetric* equilibria

in axisymmetric geometry . . .

- \rightarrow magnetic fields have family of nested flux surfaces
- \rightarrow equilibria with smooth profiles exist,
- \rightarrow may perform benchmarks (e.g. with VMEC)
- (arbitrarily approximate smooth-prof ile with stepped-profile)
- \rightarrow approximation improves as number of interfaces increases
- \rightarrow location of magnetic axis converges w.r.t radial resolution

Force balance condition at interfaces gives rise to auxilliary pressure-jump Hamiltonian system.

 $B^2 = (g_{\beta\beta}f_{\zeta}f_{\zeta} - 2g_{\beta\zeta}f_{\beta}f_{\zeta} + g_{\zeta\zeta}f_{\beta}f_{\beta})/(g_{\beta\beta}g_{\zeta\zeta} - g_{\beta\zeta}g_{\beta\zeta}),$ metric elements $g_{\alpha\beta} = \partial_{\alpha}x \cdot \partial_{\beta}x$ \rightarrow Beltrami condition, $\nabla \times \mathbf{B} = \mu \mathbf{B}$, and interface constraint, $\mathbf{B} \cdot \mathbf{n} = 0$, gives $\nabla \times \mathbf{B} \cdot \nabla s = 0$, suggests surface potential, $B_g = \partial_g f$, $B_g = \partial_g f$, so that $\partial_g B_g - \partial_g B_g = 0$, $2/21$ 0 interacting $H = 2(n-1)$ $R^2 = R^2$ \rightarrow Force balance condition, $[[p + B^2 / 2]] = 0$, introduce $H = 2(p_1 - p_2) = B_2^2 - B_2^1 = const.$ \rightarrow Let tangential field on "inner-side" of interface be given, $B_{1g} = \partial_g f$, $B_{1g} = \partial_g f$, tangential field on "outer-side", $B_{2g} = p_g$, $B_{2g} = p_g$, determined by characteristics

$$
\dot{g} = \frac{\partial H(\mathcal{G}, \zeta, p_{\mathcal{G}}, p_{\zeta})}{\partial p_{\mathcal{G}}}\bigg|_{\zeta, p_{\mathcal{G}}, p_{\zeta}} , \quad \dot{p}_{\mathcal{G}} = -\frac{\partial H}{\partial \mathcal{G}}, \quad \dot{\zeta} = \frac{\partial H}{\partial p_{\zeta}}, \quad \dot{p}_{\zeta} = -\frac{\partial H}{\partial \zeta}
$$

 \rightarrow 2 d.o.f. Hamiltonian system, and invariant surfaces only exist if "frequency" is irrational

 \Rightarrow ideal interfaces that support pressure must have irrational transform

Hamilton-Jacobi theory for continuation of magnetic field across a toroidal surface supporting a plasma pressure discontinuity M. McGann, S.R.Hudson, R.L. Dewar and G. von Nessi, Physics Letters A, 374(33):3308, 2010