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• Need to confine a   hot,   dense  plasma (ionized gas)   for a   long time

We need to confine the plasma in a stable equilibrium.

• Macroscopic force balance = Lorentz force balances gas pressure

simplest equilibrium equation is ∇p = j × B

The calculation of the equilibrium is fundamental.

Both particle transport studies, and stability calculations, depend on the equilibrium calculation

→ pointless to follow microscopic particle trajectories if the macroscopic forces are not balanced
→ to determine the stability of an equilibrium, first the equilibrium state must be known

→ many plasma disruptions etc. are caused by the lack of a stable, equilibrium state
→ experimental design “begins” with an equilibrium calculation

Grand Challenge of Magnetic Plasma Confinement
is to create sustainable energy
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• Because (1) there are no magnetic monopoles, (2) and the “hairy” ball theorem, (3) Noether’s theorem, 

in toroidal, axisymmetric fields (i.e. an idealized tokamak),
the field lines wrap around on nested, magnetic flux surfaces.

each surface characterized by frequency

if ω is rational , i.e. ω = n / m,  the field line is “closed”, i.e. “periodic”
if ω is irrational,                           the field line will come arbitrarily close to every point on the surface

• This is great for confinement → the field lines lie on surfaces
→ the particles are tied to the field lines
→ the pressure is constant on flux surfaces, p=p(s)

• ∇p = j × B is easy to solve because the equilibrium is smooth

(1) calculate equilibrium     (2) determine stability      (3) study particle transport

But, non-axisymmetric (3D) perturbations introduce chaos
→ the smooth, continuously-nested family of flux-surfaces is “broken”
→ the equilibrium is greatly complicated, becomes the equilibrium becomes fractal

Axisymmetric toroidal fields have “nested” flux-surfaces,
and flux surfaces are good for confinement
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• Invariant flux surfaces are destroyed near “resonances”, ω = n / m, n, m are integers 
construction of action-angle coordinates for perturbed system fails because of  “small-denominators”

• Magnetic islands (resonance zones) form
chaotic, “irregular” field lines emerge,
that wander seemingly randomly over a volume 

• Confinement deteriorates, 
the pressure is flat inside islands and chaos

•The calculation of three-dimensional
partially-chaotic equilibria must

1) Be consistent with theoretical plasma physics
2) Be consistent with experimental results
3) Be consistent with Hamiltonian chaos theory
4) employ numerical methods that accommodate fractals

With increasing non-axisymmetry,
the flux surfaces become increasingly “broken” 

separatrix splitting,   unstable manifold,   “chaotic tangle”

deformation of boundary

Poincaré Plot of DIIID
non-axisymmetric

Poincaré Plot of DIIID
axisymmetric
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WHERE TO START?     START WITH CHAOS

The fractal structure of chaos is related to the structure of numbers
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is it pathological?
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Diophantine Pressure Profile

 pressure gradient at Diophantine irrationals
 flatten pressure at every rational
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THEN,         ADD PLASMA PHYSICS

Force balance means the pressure is a “fractal staircase”
• ∇p = j × B,  implies that   B•∇p=0 i.e. pressure is constant along a field line

• Pressure is flat across the rationals                                                               (assuming no “pressure” source inside the islands)
→ islands and chaos at every rational     → chaotic field lines wander about over a volume

• Pressure gradients supported on the “most-irrational” irrationals
→ surviving “KAM” flux surfaces confine particles and pressure
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Q) How do non-integrable fields confine field lines?
A) Field line transport is restricted by KAM surfaces and cantori
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510  iterations →

“noble”
cantori
(black dots)

KAM surface

cantor set

complete barrier

partial barrier

→ KAM surfaces are closed, toroidal surfaces;
and stop radial field line transport

→ Cantori have many holes,
but still  cantori can severely “slow down”
radial field line transport

→ Example, all flux surfaces destroyed by chaos,
but even after 100 000 transits around torus
the field lines cannot get past cantori

Calculation of cantori for Hamiltonian flows
S.R. Hudson,  Physical Review E 74:056203, 2006
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Simplified Diagram of the structure of integrable fields,
→showing continuous family of invariant surfaces 

irrational surface

rational surface

Action-angle coordinates can be constructed for “integrable” fields

• the “action” coordinate coincides with the invariant surfaces
• dynamics then appears simple

irrational surface

rational surface

angle coordinate



Simplified Diagram of the structure of non-integrable fields,
→showing the fractal hierarchy of invariant sets 

KAM  surface

O

cantorus

island chain

X OXperiodic orbits 



Simplified Diagram of the structure of non-integrable fields,
→showing the fractal hierarchy of invariant sets 

OX

O X OX
“O” point is a saddle of the action
“X” point is a minimum of the action

S[ ( ) ] =  ( , , )  θ φ θ θ φ∫ A . dl�



Simplified Diagram of the structure of non-integrable fields,
→showing the fractal hierarchy of invariant sets 

O

Are ghost-surfaces quadratic-flux minimizing?
S.R. Hudson & R.L. Dewar,  Physics Letters A 373:4409, 2009

Unified theory of Ghost and Quadratic-Flux-Minimizing Surfaces
R.L. Dewar, S.R. Hudson & A.M. Gibson
Journal of Plasma and Fusion Research SERIES, 9:487, 2010

Ghost Surfaces
action gradient flow

Quadratic-Flux Minimizing Surfaces
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Simplified Diagram of the structure of non-integrable fields,
→showing the fractal hierarchy of invariant sets 

Chaotic coordinates can be constructed
• coordinate surfaces are adapted to the fractal hierarchy of remaining invariant sets
• ghost surfaces ≡ quadratic-flux minimizing surfaces are “almost-invariant”
• dynamics appears “almost-simple” 



Chaotic coordinates “straighten out” chaos
Poincaré plot of chaotic field
(in action-angle coordinates of unperturbed field)

Poincaré plot of chaotic field
in chaotic coordinates

phase-space is partitioned into (1)   regular (“irrational”) regions      with “good flux surfaces”, temperature gradients

and (2) irregular (“   rational”) regions      with islands and chaos, flat profiles
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Generalized magnetic coordinates for toroidal magnetic fields
S.R. Hudson, Doctoral Thesis, The Australian National University, 1996
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1. Transport  along the  magnetic field  is unrestricted
→ consider parallel random walk,  with long steps≈ collisional mean free path

2. Transport  across the magnetic field is very  small
→consider perpendicular random walk with short steps≈ Larmor radius                                                           

3. Anisotropic diffusion balance

4. Compare solution of numerical calculation to ghost-surfaces

5. The temperature adapts to KAM surfaces,cantori,
and ghost-surfaces!

i.e. T=T(s), where s=const. is a ghost-surface

from T=T(s,θ,φ) to T=T(s) is a fantastic simplification, allows analytic solution

Chaotic coordinates simplify anisotropic transport
The temperature is constant on ghost surfaces, T=T(s)
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Temperature contours and ghost-surfaces for chaotic magnetic fields
S.R. Hudson et al.,  Physical Review Letters, 100:095001, 2008
Invited talk 22nd IAEA Fusion Energy Conference, 2008
Invited talk 17th International Stellarator, Heliotron Workshop, 2009

An expression for the temperature gradient in chaotic fields
S.R. Hudson,  Physics of Plasmas, 16:100701, 2009
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particle “knocked”
onto nearby field line

212 ×212 = 4096 ×4096 grid points
(to resolve small structures)

isothermghost-surfaceghost-surface



small changes to coil geometry 
→ remove resonant fields
→ stable, high-pressure plasma
→ quasi-symmetry
→ satisfy engineering constraints

Non-axisymmetric (i.e. three-dimensional) experiments 
designed to have “good-flux-surfaces”

2cm

“healed” equilibrium

• The construction of  ghost-surfaces ≡ quadratic-flux minimizing surfaces
provides an easy-to-calculate measure of the island size

• Standard numerical optimization methods can be used to
design non-axisymmetric experiments with “good flux surfaces”

• Example : In the design of the National Compact Stellarator Experiment  (NCSX),
small changes in the coil geometry were used to remove resonant error fields

“equilibrium” with chaos
Eliminating islands in high-pressure, free-boundary stellarator MHD equilibrium solutions
S.R. Hudson et al.,  Physical Review Letters 89:275003-1, 2002
Invited Talk 19th IAEA Fusion Energy Conference, 2002



1958   An Energy Principle for hydromagnetic stability problems
I.B. Bernstein, E.A. Freiman, M.D. Kruskal & R.M. Kulsrud

plasma displacement

ideal plasma response

Brief History of MHD equilibrium theory  
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1958   An Energy Principle for hydromagnetic stability problems
I.B. Bernstein, E.A. Freiman, M.D. Kruskal & R.M. Kulsrud

plasma displacement

ideal plasma response

1954 KAM theorem
1962    A.N. Kolmogorov (1954),      J. Moser (1962),      V.I. Arnold (1963)

1967   Toroidal confinement of plasma
H. Grad          “very pathological pressure distribution”         islands and chaos not allowed by ideal variations

dense set of singular currents
plasma variations are over constrained

Brief History of MHD equilibrium theory  
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1958   An Energy Principle for hydromagnetic stability problems
I.B. Bernstein, E.A. Freiman, M.D. Kruskal & R.M. Kulsrud

plasma displacement

ideal plasma response

1954 KAM theorem
1962    A.N. Kolmogorov (1954),      J. Moser (1962),      V.I. Arnold (1963)

1967   Toroidal confinement of plasma
H. Grad          “very pathological pressure distribution”         islands and chaos not allowed by ideal variations

dense set of singular currents
plasma variations are over constrained

1983 3D ideal equilibrium codes
1984 BETA Garabedian et al., VMEC Hirshman et al.                      minimize W allowing ideal variations

(other “codes” that are ill-posed,  include non-ideal effects,…) do not allow islands & chaos
cannot resolve singular currents, fail to converge

( If you don’t get the mathematics correct, the “numerics” won’t work. )

Brief History of MHD equilibrium theory  
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1958   An Energy Principle for hydromagnetic stability problems
I.B. Bernstein, E.A. Freiman, M.D. Kruskal & R.M. Kulsrud

plasma displacement

ideal plasma response

1954 KAM theorem
1962    A.N. Kolmogorov (1954),      J. Moser (1962),      V.I. Arnold (1963)

1967   Toroidal confinement of plasma
H. Grad          “very pathological pressure distribution”         islands and chaos not allowed by ideal variations

dense set of singular currents
plasma variations are over constrained

1983 3D ideal equilibrium codes
1984 BETA Garabedian et al., VMEC Hirshman et al.                      minimize W allowing ideal variations

do not allow islands & chaos
cannot resolve singular currents, fail to converge

IDEAL VARIATIONS OVERLY CONSTRAIN THE TOPOLOGY,    LEAD TO A DENSE SET OF SINGULARTIES

HOWEVER,  IF THE VARIATION IS UNCONSTRAINED, THEN THE MINIMIZING STATE IS TRIVIAL 
i.e. vacuum.

Brief History of MHD equilibrium theory  
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Q) What constrains a weakly resistive plasma?
A) Plasmas cannot easily untangle themselves

Question 1. (topology)               how many times do two closed curves loop through each other?

Question 2. (topology)               how ‘knotted’ is a magnetic field?

Question 3. (physics)                 are there simple principles that govern plasma confinement?

HYPOTHESIS    OF    TAYLOR    RELAXATION 
→Weakly resistive plasmas will relax to minimize the energy (and some flux surfaces may break), 

but the plasma cannot easily “untangle” itself    i.e. constraint of conserved helicity

→Minimize W ≡ Energy, subject to constraint of conserved H ≡ Helicity = H0

→Taylor relaxed state is a linear force free field, ∇×B=μ B



Step 1 : partition the plasma into N nested volumes                  (allows for non-trivial global pressure)

Step 2 : define Energy and Helicity integrals                             (local to each volume)

Step 3 : construct multi-region, relaxed MHD energy functional, called MRXMHD

Step 4 : The extremizing solutions satisfy the Euler-Lagrange equations
relaxed Taylor state in each volume                                                             
continuity of total pressure across volume interfaces
rotational-transform on ideal interfaces is a Fibonacci irrational

Step 5 : Numerical implementation,   Stepped Pressure Equilibrium Code (SPEC),
(1) uses mixed Fourier, finite-element representation for  magnetic vector potential,  A, and geometry     (2) calculation parallelized over volumes
(3) exploits spectral condensation algorithm     (4) exploits sparse linear structure of ∇×B=μ B     
(5) pre-conditioned conjugate gradient methods and/or globally convergent Newton method 
(6) online documentation     (7) graphical user interface
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Multi-Region, Relaxed MHD is a generalization 
of ideal MHD and Taylor relaxation
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Computation of multi-region relaxed magnetohydrodynamic equilibria
S.R. Hudson, R.L. Dewar, G. Dennis, M.J. Hole, M. McGann, G.von Nessi and S. Lazerson, Physics of Plasmas, 19:112502, 2012
Invited Talk 20th International Toki Conference, 2010
Invited Talk 38th European Physical Society Conference on Plasma Physics, 2011 
Invited Talk 18th International Stellarator/Heliotron Workshop, 2012

Bruno & Laurence, 1996
stepped pressure equilibria are guaranteed to exist



The Stepped Pressure Equilibrium Code (SPEC),
has excellent convergence properties

convergence with respect to radial resolution, N

• First 3D equilibrium code to 
1. allow islands & chaos,
2. have a solid mathematical foundation,
3. give excellent convergence,

convergence with respect to Fourier resolution, M

approximate solution exact solution

error decreases as N=h-1,  M  increase

Poincaré  Plot (of convergence calculation)
(axisymmetric equilibrium plus resonant perturbation)

1
,error   exp(- )n
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h = 1/N radial resolution
M          Fourier resolution

1if exp(- ) is small,   error nM hγ +∼



• Consider a DIIID experimental shot,  with applied three-dimensional “error fields”
(used to suppress edge instabilities)

• Vary the equilibrium parameters until “numerical” diagnostics match observations     
(i.e. plasma boundary, pressure and current profiles),                     (e.g. Thomson scattering, motional Stark effect polarimetry,  magnetic diagnostics)

• SPEC is being incorporated into 
the “STELLOPT” equilibrium reconstruction code
by Dr. S. Lazerson, a post-doctoral fellow at Princeton Plasma Physics Laboratory

Equilibrium reconstruction of 3D plasmas
is where “theory meets experiment” 
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3D Equilibrium Effects due to RMP application on DIII-D
S. Lazerson, E. Lazarus, S. Hudson, N. Pablant, D. Gates
39th European Physical Society Conference on Plasma Physics, 2012 
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Stepped-pressure approximation to smooth profile
DIIID Poincaré Plot
experimental reconstruction
using SPEC



MRXMHD explains self-organization of
Reversed Field Pinch into internal helical state

Excellent Qualitative agreement between numerical calculation and experiment
→ this is first (and perhaps only?) equilibrium model able to explain internal helical state with two magnetic axes
→ publication presently being prepared by Dr. G Dennis, a post-doctoral fellow at the Australian National University 

NUMERICAL CALCULATION USING STEPPED PRESSURE EQUILIBRIUM CODE
Taylor relaxation and reversed field pinches
G. Dennis, R. Dewar, S. Hudson, M. Hole, 2012  20th Australian Institute of Physics Congress

Fig.6. Magnetic flux surfaces in the transition from a QSH state . . to a fully developed SHAx state .  . 
The Poincaré plots are obtained considering only the axisymmetric field and dominant perturbation”

EXPERIMENTAL RESULTS
Overview of RFX-mod results
P. Martin et al., Nuclear Fusion, 49 (2009) 104019

August,  2009nature
physics
Reversed-field pinch
gets self-organized



1958   An Energy Principle for hydromagnetic stability problems
I.B. Bernstein, E.A. Freiman, M.D. Kruskal & R.M. Kulsrud

1954 KAM theorem
1962    A.N. Kolmogorov (1954), J. Moser (1962), V.I. Arnold (1963)

1967   Toroidal confinement of plasma
H. Grad “very pathological pressure distribution”

1974   Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields
J.B. Taylor                                 relax the ideal constraints, include helicity constraint

1996   Existence of Three-Dimensional Toroidal MHD equilibria with Nonconstant Pressure
O.P. Bruno & P. Laurence       “. . . our theorems insure the existence of sharp boundary solutions . . .”

i.e. stepped pressure equilibria are well defined

2012    Computation of Multi-Region, Relaxed Magnetohydrodynamic Equilibria
S.R. Hudson,  R.L. Dewar et al.  • chaotic equilibria with arbitrary pressure

• combines ideal MHD and Taylor relaxation
for  N →∞,  recover globally-constrained, ideal MHD
for  N=1,     recover globally-relaxed         Taylor force-free state

Brief History of MHD equilibrium theory  
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O.P. Bruno & P. Laurence       “. . . our theorems insure the existence of sharp boundary solutions . . .”
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1. Compute “free-boundary”, partially-chaotic equilibria that are                                      
supported by vacuum fields with a chaotic-tangle

• investigate structure of chaotic-tangle that surrounds a high-pressure plasma
• explore relationship between cantori and unstable manifold near plasma edge
• explore how transport through chaotic edge is restricted by cantori

2. Is the suppression of edge-localized modes by partial chaos                                                  
a manifestation of multi-region, relaxed MHD instability phenomena?

• MRXMHD allows the stability of partially chaotic equilibria to be defined and calculated
• to what extent do applied error fields ergodize the plasma edge?
• can experimental disruptions be understood using multi-region, relaxed MHD?

3. Equilibrium reconstruction calculations
• can numerical calculations predict experimental observations?
• which equilibrium model best fits experiment?

4. Development of transport model
• how do charged particles move through partially-chaotic, stepped-pressure equilibria?

5. Compute “critical-pressure gradient”, explore avalanche phenomena
• what is the most pressure a flux surface can support before it is destroyed?
• do all the flux-surfaces collapse simultaneously (i.e. avalanche) when pressure exceeds a certain threshold?

For full list of publications & presentations      by Dr. S.R. Hudson                                               http://w3.pppl.gov/~shudson/bibliography.html
on multi-region, relaxed MHD                          http://w3.pppl.gov/~shudson/spec.html#subroutines

Ongoing research activities







With increasing non-axisymmetry,
the flux surfaces become increasingly “broken” 

1.The transformation to action-angle coordinates fails where frequency ω = n / m, is rational
classical problem of small denominators, resonance zones ~ magnetic islands

invariant flux surfaces are destroyed
separatrix splitting, chaotic “tangle”

2. The field lines become “chaotic”
the field lines wander about seemingly randomly
an islands around islands around islands fractal hierarachy



uranium fissionoilcoal

A plasma is a gas of charged particles

(single particle) ( )

            Lorentz force balances gas pressure  equilibrium
q

p

= + ×
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j B

1. electrically conducting, need to consider plasma currents, j
2. electric fields are shielded, E ≈ 0
3. plasmas display “collective” behaviour, i.e. waves and oscillations

The “physics” of magnetic confinement is based on the Lorentz force 

4. the Lorentz force ‘ties’ the particles to the field lines,                   (but free-streaming along field lines)

Fukushima

Grand Challenge is to create sustainable energy
To confine a   1. hot                                 (fast particles can overcome Coulomb repulsion and collide)

2. dense  plasma               (so that many particles collide)
for  a      3. long time in an equilibrium state

and to have a clean, safe, 21st century
by establishing fusion as the global energy source . . . . . .

Fusion
1) no radioactive products
2) no uncontrollable chain reaction



1. There are no magnetic monopoles . . .
i.e. ∇•B = 0,    magnetic field lines have “no end”

2. The hairy ball theorem (of algebraic topology)

there is no nonvanishing continuous tangent vector field on a sphere, . . . . . but there is on a torus!

3. Noether’s theorem (of theoretical physics)  e.g. if the system does not depend on the angle, the angular momentum is constant

each symmetry (i.e. ignorable coordinate) of a Hamiltonian system has a integral invariant

4. Toroidal magnetic fields are Hamiltonian can use all the methods of Hamiltonian and Lagrangian mechanics!
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Several theorems of mathematics & theoretical physics,
prove that . . .

Trajectories are extremal curves of action-integral



1. Poincaré-Birkhoff Theorem

For every rational, ω = n / m, where n, m are integers,
• a periodic field-line that is a minimum of  the action integral will exist
• a  .  .  .  .  .  .  .   .  .  .  .  .  .  .  saddle .  .  .  .  .  .  .  .  .  .  .    will exist

2. Aubry-Mather Theorem

For every ω ≠ n / m , 
• there exists an “irrational” field-line that is a minimum of the action integral

3. Kolmogorov-Arnold-Moser Theorem

4. Greene’s residue criterion
• the existence of a KAM surface is related to the stability of the nearby Poincaré-Birkhoff periodic orbits

Theorems from Hamiltonian chaos theory
provide a solid foundation 

 is very irrational if there exist an ,  such that | ,  for all integers ,
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→ transport of pressure along field is “infinitely” fast
→ no scale length in ideal MHD
→ pressure adapts to fractal structure of phase space
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∫ j
B

v

( )1 solution only if + 0

introduce non-ideal terms, such as resistivity, , perpendicular diffusion, ,  [ ,
To have a well-posed equilibrium with chaoti

4) +        

c  need 
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HINT

σ

η κ

σ

⊥

⊥+ ⊥ ∇ ⋅ =∇× = ≡

→

B jB j B

B

j

 3 , , ..],
 or return to an energy principle, but relax infinity of ideal MHD constraints

M D NIMROD
→

                   flatten pressure at every rational
                           infinite fractal structure
                                not Riemann 

0, if ( , ) s.t. | |  

1, otherwise
'

km n x r m
p

n
m

−∃ − <
=
⎧⎪
⎨
⎪⎩

i
i
i integrable

An ideal equilibrium with non-integrable (chaotic) field and 
continuous pressure, is infinitely discontinous 

radial coordinate≡transform
pr

es
su

re

Diophantine Condition
Kolmogorov, Arnold and Moser



Extrema of energy functional obtained numerically;
introducing the Stepped Pressure Equilibrium Code (SPEC)

, ,, , , ,R cos( ), sin( )* toroidal coordinates ( , , ),   *interface geometry 

* exploit gauge freedom   ( , , ) ( , , )

* Fourier     

The vector-potential is discretized

m n m nl l m n l l m nR m n Z Z m ns

A s A sϑ ζ

ϑ ζ ϑ ζϑ ζ

ϑ ζ ϑ ϑ ζ ζ

− −

= ∇ + ∇

= =∑ ∑
A

( )
,

,

1

( ) cos( )

( )

                     

* Finite-element               ( ) ( )

* derivatives w.r.t. vector-potential

and inserted into constrained-energy functiona / 2l 

i

m n

i
N

l l l l ll

s m n

s

A

s s

a

a a

F W H M

ϑ ϑ

ϑ ϑ

ϑ ζ

ϕ

μ ν
=

−=

=

→

= − −

∑
∑

∑

(boundary condition)

 linear equation for Beltrami field 
* field in each annulus computed independently, distributed across multiple cpus
* field in each annulus depends on enclosed toroidal flux 

μ∇× =B B

{ }, ,

 and 
                       poloidal flux, , and helicity-multiplier, 
                       geometry of interfaces, ,

* interf

Force balance solved using multi-dimensional Newton method.
m n m n

P

R Z
ψ μ→

→ ≡ξ

{ }
( )2 2 2 2

2
,

adjust angle freedom to minimize (

ace geometry is adjusted to satisfy force [[p+ 2 ]] =0

* angle freedom constrained by spectral-condensation, 
* derivative matrix, , compute

) mn mn

m n

m n R Z

B

+

≡

∇

+∑
F[ξ]

F[ξ] d in parallel using finite-differences
* call NAG routine: quadratic-convergence w.r.t. Newton iterations; robust convex-gradient method;

piecewise cubic or quintic basis polynomials

minimal spectral width [Hirshman, VMEC]

solved using sparse linear solver

adjusted so interface transform is strongly irrational 



depends on finite-element basis

=A A ,   = ,  = ,         need to quantify = - 
A , A ( )

( )
        (

 Scaling of numerical error with radial resolution
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∼
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Numerical error in Beltrami field scales as expected 

h = radial grid size = 1 / N
n = order of polynomial

Poincaré plot, ζ=0

(m,n)=(3,1) island
+ (m,n)=(2,1) island
=                     chaos

[ ]cos(2 ) cos(3 )

( , )
( , ) ,

inner surface
0.1

outer interface
0.2 

1.0 cos ,
         sin

r

r

R r
Z r

ϑ ζ ϑ ζ

ϑ ζ
ϑ ζ

δ

ϑ
ϑ

− + −

=

= +

= +
=

(logscale)     N

(logscale)error 
( ) ( ) ( )1 2 2- ( - ( - ()    )    )n n ns h h hO O Oμ μ ϑ μ ζ− − −∇ ∇ ∇∼ ∼ ∼j B j B j Bi i i

Example of chaotic Beltrami field
in single given annulus;

sub-radial grid, N=16



cy
lin

dr
ic

al
 Z
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Stepped-pressure equilibria accurately approximate 
smooth-pressure axisymmetric equilibria 

magnetic fields have family of nested flux surfaces
equilibria with smooth profiles exist,
may perform benchmarks (e.g. with VMEC)

   (arbitrarily approximate smooth-prof

in axisymmetric geometry . . .
→
→
→

ile with stepped-profile)
approximation improves as number of interfaces increases
location of magnetic axis converges w.r.t radial resolution

→
→

cylindrical R

cy
lin

dr
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al
 Z

lower half = SPEC interfaces

upper half = SPEC & VMEC

in
cr

ea
si

ng
 p
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ss
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e

increasing pressure resolution ≡ number of interfaces
N  ≡ finite-element resolution

magnetic axis vs. radial resolution
using quintic-radial finite-element basis

(for high pressure equilibrium)
(dotted line indicates VMEC result)

toroidal flux ψ

Pr
es

su
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, p

toroidal flux ψ

stepped-profile approximation to smooth profile
tr

an
sf

or
m



Force balance condition at interfaces gives rise to auxilliary
pressure-jump Hamiltonian system.

2

Beltrami condition, ,  and interface constraint, 0,  gives 0,
     suggests surface potential, ,   ,  so that 0,

     ( 2 ) ( ) ,    

s
B f B f B B

B g f f g f f g f f g g g g
ϑ ϑ ζ ζ ϑ ζ ζ ϑ

ϑϑ ζ ζ ϑζ ϑ ζ ζζ ϑ ϑ ϑϑ ζζ ϑζ ϑζ

μ→ ∇× = ⋅ = ∇× ⋅∇ =

= ∂ = ∂ ∂ − ∂ =

= − + −

B B B n B

2 2 1
1 2 2 2

1 1

metric elements g  

Force balance condition, [[ / 2]] 0,  introduce 2( - ) .
Let tangential field on "inner-side" of interface be given, ,   ,

   tangential fie

p B H p p B B const
B f B f

αβ α β

ϑ ϑ ζ ζ

≡ ∂ ⋅ ∂

→ + = ≡ = − =
→ = ∂ = ∂

x x

2 2

, ,

ld on "outer-side", ,   ,  determined by characteristics

( , , , )
  = ,    = - ,     = ,   = - 

 2 d.o.f. Hamiltonian system, and invariant surfaces only exi
p p

B p B p

H p p H H Hp p
p p

ϑ ζ

ϑ ϑ ζ ζ

ϑ ζ
ϑ ζ

ϑ ζζ

ϑ ζ
ϑ ζ

ϑ ζ

= =

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

→

� �� �

st if "frequency" is irrational

ideal interfaces that support pressure must have irrational transform⇒

Hamilton-Jacobi theory for continuation of magnetic field across a toroidal surface supporting a plasma 
pressure discontinuity
M. McGann, S.R.Hudson, R.L. Dewar and G. von Nessi, Physics Letters A, 374(33):3308, 2010
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