3D Equilibrium Diagnostic Response for W7-X and ITER

S. A. Lazerson, J. Geiger, Y. Gribov, D. Gates Princeton Plasma Physics Laboratory IPP ITER Organization 19th ISHW and 16th RFP Workshop

Why are 3D equilibrium effects important?

Strike point control scenarios for W7-X

Effect of RMP application on ITER boundary control

Outline

- Motivation
- Codes
 - VMEC Equilibrium

- STELLOPT Forward modeling
- W7-X Results
- ITER Results

VMEC provides a 3D equilibrium model

- Ideal 3D MHD equilibrium model
- Constraint of nested flux surfaces

$$W = \int \left(\frac{|B|^2}{2\mu_0} + \frac{p}{\gamma - 1}\right) d^3x$$
$$\vec{J} \times \vec{B} - \nabla p = 0$$

DIAGNO2 - magnetic diagnostic signals

- Calculates magnetic diagnostic signal
- •Uses a virtual casing principle
- Fast adaptive surface integral
- Interfaced to VMEC, SPEC, PIES

STELLOPT can map parameter space

- •STELLOPT modified to perform parameter scans
- Maps of parameter space are now possible

PCA simplifies multivariate data

- •Extracts variables in datasets
- •Stored energy and current scanned
- •400 VMEC Equilibria calculated
- Two principle components identified
- •Strong sensitivity to current (~85%)
- •Weak sensitivity to beta (~15%)
- •Low pressure driven current

W-7X Beta/Current Principle Component Analysis

The W7-X Bootstrap Profile Evolution

- Boostrap Current rotates divertor islands
- •ECCD can be used to counteract the effect

Current Evolution (no ECCD)

Current Evolution (ECCD)

Bootstrap evolution moves strike points

W7-X Diagnostic Set

- •W7-X will have an extensive diagnostic set
 - Thomson Scattering
 - Inteferrometry
 - •Flux Loops
 - Segmented Rogowski Coils
- Low pressure driven current suggests an ability to detect bootstrap current
- Trim and sweep coils can control strikepoint motion
- •Bootstrap current detection?

- •Ten in-vessel stellarator symmetric coils
- •Provide a means to control strike points

- •Ten in-vessel stellarator symmetric coils
- •Provide a means to control strike points

- •Ten in-vessel stellarator symmetric coils
- •Provide a means to control strike points

- •Ten in-vessel stellarator symmetric coils
- •Provide a means to control strike points

- •Ten in-vessel stellarator symmetric coils
- •Provide a means to control strike points

- •Ten in-vessel stellarator symmetric coils
- •Provide a means to control strike points

- •Ten in-vessel stellarator symmetric coils
- •Provide a means to control strike points

- •Ten in-vessel stellarator symmetric coils
- •Provide a means to control strike points

- •Ten in-vessel stellarator symmetric coils
- •Provide a means to control strike points

Magnetics detect scenario differences

- •Flux loop response for each scenario calculated
- •Signal due to bootstrap current present
- •Ability to constrain bootstrap current unknown
- Ability to detect strike point motion unknown
- Sensitivity analysis in progress

3D Effects in ITER

VMEC utilized to calculate equilibrium response to RMP application

DIAGNO2 utilized to calculate flux loop response in ITER

Boundary Displacements with ELM Coils (L-Mode)

ELM Coil Current	Maximum Displacement
n=3 45 [kA]	0.70 [cm]
n=3 90 [kA]	I.88 [cm]
n=4 30 [kA]	0.54 [cm]
n=4 90 [kA]	I.46 [cm]

Boundary Displacements with ELM Coils (H-Mode)

In-Vessel Coil Scenario	Maximum Displacement
n=3 45 [kA]	0.84 [cm]
n=3 90 [kA]	I.84 [cm]
n=4 30 [kA]	I.15 [cm]
n=4 90 [kA]	2.25 [cm]

Flux loops show a clear non-axisymmetric response

- •Flux loop response to plasma calculated
- •Compared to axisymmetric plasma signal
- Coil configurations averaged
- •Nearly all loops indicate > 1% signal change
- •Pink loops indicate >20% change

Conclusions

- Magnetic diagnostic are sensitive to bootstrap current variations in W7-X allowing the development of island divertor control scenarios
- ITER Flux Loops are sensitive to changes in the 3D equilibria when RMP's are applied suggesting care should be taken in design of real-time control systems

