Are ghost-surfaces quadratic-flux minimizing?

(Construction of magnetic coordinates for chaotic magnetic fields)

Stuart R. Hudson*Princeton Plasma Physics Laboratory*

Robert L. Dewar *The Australian National University*

Part I. Motivation

→**A coordinate framework of almost-invariant surfaces can be used to simplify the description of chaotic fields.**

For magnetic fields with a continuously nested family of flux surfaces, the construction of magnetic coordinates greatly simplifies the dynamics.

Example: straight-field line magnetic coordinates are analogous to **action-action** coordinates for **integrable** Hamiltonian systems. \circ 0

shall borrow extensively from Hamiltonian & Lagrangian mechanics

→ **We seek to generalize the construction of magnetic coordinates to non-integrable magnetic fields**

Coordinates are adapted to the invariant structures of chaotic fields (e.g. KAM surfaces, cantori, and periodic-orbits) **are called "chaotic-coordinates".**

Hamiltonian chaos theory provides a solid understanding about the destruction of surfaces

1. Poincaré-Birkhoff Theorem

 magnetic field-line action = *curve* $\int_{curve} \mathbf{A} \cdot \mathbf{dl}$

curves that extremize the action integral are field lines

For every rational, $\omega = n/m$, where n, m are integers, • a periodic field-line that is a *minimum* of the action integral will exist •a *saddle* will exist

2. Aubry-Mather Theorem

For every $\omega \neq n/m$,

• there exists an "irrational" field-line that is a *minimum* of the action integral

3. Kolmogorov-Arnold-Moser Theorem

- ω is very irrational if there exist an r, k such that $|\omega n/m| > r m^{-k}$, for all integers n, m • if ω is very irrational then the Aubry-Mather field line will cover a surface, called a KAM surface *Diophantine condition*
- if not, the Aubry-Mather field line will cover a Cantor set, called a cantorus

4. Greene's residue criterion

• *the existence of a KAM surface is related to the stability of the nearby Poincaré-Birkhoff periodic orbits*

Simplified Diagram of the structure of integrable fields, [→]showing continuous family of invariant surfaces

Action-angle coordinates can be constructed for "integrable" fields

- the "action" coordinate coincides with the invariant surfaces
- dynamics then appears simple

Simplified Diagram of the structure of non-integrable fields, [→]showing the fractal hierarchy of invariant sets

After perturbation:

the rational surfaces break into islands, "stable" and "unstable" periodic orbits survive, some <u>irrational</u> surfaces break into cantori,

some <u>irrational</u> surfaces survive (KAM surfaces), break into cantori as perturbation increases,

 \rightarrow action-angle coordinates can no longer be constructed globally

Simplified Diagram of the structure of non-integrable fields, [→]showing the fractal hierarchy of invariant sets

Simplified Diagram of the structure of non-integrable fields, [→]showing rational, "almost-invariant" surfaces

Ghost surfaces and **Quadratic-Flux Minimizing surfaces** pass through the island chains and connect the O and X periodic orbits.

(These will be described in more detail later.)

Simplified Diagram of the structure of non-integrable fields, [→]showing coordinate surfaces that pass through islands

"Chaotic-coordinates" can be constructed

- coordinate surfaces are adapted to the <u>fractal hierarchy of remaining invariant sets</u>
- ghost surfaces ≡ quadratic-flux minimizing surfaces are "almost-invariant"
- dynamics appears "almost-simple"

Chaotic coordinates "straighten out" chaos

phase-space is partitioned into (1) regular ("irrational") regions with "good flux surfaces", temperature gradients and (2) irregular (" rational") regions with islands and chaos, flat profiles

Chaotic coordinates simplify anisotropic transport

The temperature is constant on ghost surfaces, *T=T(s)*

Part II. Definitions

The action functional is a line integral, S[C]= $\vert L(\vartheta,\vartheta,t)dt$, along arbitrary curve, $\vartheta = \vartheta(t)$, where L = Lagrangian, *C* $L(\vartheta, \vartheta, t)dt$, along arbitrary curve, $\vartheta = \vartheta(t)$, where $L \equiv$ $\int_C L(\partial,\dot{\mathcal{S}})$

$$
\delta S = \int_C \left[\frac{\partial L}{\partial \theta} - \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}} \right] \delta \theta dt, \qquad \text{action-gradient} = \frac{\delta S}{\delta \theta} = \frac{\partial L}{\partial \theta} - \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}}
$$

Ghost surfaces are defined by an action-gradient flow

$$
\frac{\partial \theta}{\partial \tau} = -\left(\frac{\delta S}{\delta \theta}\right)
$$

infinite dimensional functional derivative

Quadratic-flux minimizing surfaces are defined by a variational principle

2 2 quadratic-flux functional $\varphi_2 = \frac{1}{2}$ *S* $\tilde{-}$ | $d\theta dt$ δ δθ $\varphi = \frac{1}{2} \int \int \left(\frac{\delta S}{2} \right)^2 d\theta$ $\equiv \frac{1}{2} \int \int \left(\frac{\delta S}{\delta \theta} \right)$

Toroidal magnetic fields are a Hamiltonian system [→]**may construct the field-line Lagrangian**

1. The magnetic field line Hamiltonian is defined by $B = \nabla \psi \times \nabla \mathcal{G} + \nabla \chi \times \nabla \zeta$ $\psi =$ "momentum", $\theta =$ "position", $\xi =$ "time" $\exists t, \chi(\psi, \theta, \zeta) =$ field line Hamiltonian,

2.Can construct the "Action Integral", which is a line integral along an arbitrary curve,

$$
S[C] = \int_C \mathbf{A} \cdot d\mathbf{l},
$$
 which is analogous to $S[C] = \int_C L(\mathcal{G}, \dot{\mathcal{G}}, t)dt$, $L = \text{Lagrangian}$,
(will assume that "velocity" is determined by "position", i.e. $\dot{\mathcal{G}} = \frac{d\mathcal{G}}{dt}$,
so that action is function of position only, i.e. S=S[$\mathcal{G}(t)$]).

Arbitrary "trial" curves that *extremize* the action integral correspond to "physical" magnetic field lines

4. Shall restrict attention to (discrete) piecewise-linear, periodic curves

A curve, $\mathcal{G}_i(\zeta)$, is a periodic orbit if it minimizes the action,

i.e. the action gradient is zero $\left| \frac{\partial z}{\partial \Omega} \right| = \frac{\partial z}{\partial \Omega} = 0$ *i* i \cup \cup i *S S* δ $\delta\mathcal{G}$), $\partial\mathcal{G}$ $\left(\frac{\delta S}{\delta \theta}\right)_i \equiv \frac{\delta S}{\partial \theta_i} =$

Definition of (1) Ghost Surfaces, and

(2) Quadratic-Flux Minimizing Surfaces

Ghost Surfaces are defined by an action gradient flow

i

→ begin at *"stable"* periodic orbit (closed curve) which is a saddle of the action-integral

→ give small initial *"push"* in the decreasing direction

→ allow curve to *"flow"* in direction of steepest descent

→ curve will finally make it to *"unstable"* periodic orbit which is a minimum of the action-integral

 \rightarrow action-gradient is related to "normal field", Quadratic-Flux Minimizing Surfaces are surfaces that minimize 2 2 1 2*S* $\frac{\delta S}{\delta}$ $\int d\theta d$ $\varphi_2 \equiv \frac{1}{2} \iint \left(\frac{\delta S}{\delta \theta} \right)^2 d\theta d\zeta$

 \rightarrow for a given magnetic field, **B**, adjust geometry of surface to minimize $\varphi_2 \approx \frac{1}{2} \iint B_n^2$ 1 2 $\varphi_2 \approx \frac{1}{2} \iint B_n^2 d\theta d\zeta$

(Intuitive definition)

Numerical Evidence:

Ghost-surfaces are almost identical to QFMin surfaces.

Ghost surfaces are defined by action-gradient flow QFMin surfaces defined by minimizing quadratic-flux

 \rightarrow no obvious reason why these different definitions should give the same surfaces

- \rightarrow Numerical evidence suggests that ghost-surfaces and QFMin surfaces are almost the same
- \rightarrow This is confirmed to 1st order using perturbation theory
- \rightarrow Opens possibility that fast, robust construction of unified almost-invariant surfaces for chaotic coordinate framework

For strong chaos, and high periodicity, discrepancies exist between ghost-surfaces & QFMin surfaces.

 \rightarrow Ghost-surfaces have better properties (guaranteed to not intersect, graphs over angle)

but they are more difficult to construct.

 \rightarrow OFMin surfaces have intuitive definition of being "almost-invariant", and are easily constructed using the variational principle

but high-periodicity QFMin surfaces become too deformed in regions of strong chaos

 \rightarrow We want a unified approach that combines best features of both!

Current research: angle coordinate can be re-defined, so that ghost-surfaces and QFMin surfaces are identical.

 δS

Introduce new angle, Θ , via angle transformation, $\theta = \theta(\Theta, \zeta)$

Construction of ghost-surfaces and QFMin surfaces is "angle-dependent"

The action gradient in the new angle is $\frac{\delta S}{\delta S} = \frac{\partial \theta}{\partial \theta} \frac{\delta S}{\delta S}$ $\delta\Theta$ $\delta\Theta$ $\delta\theta$ $\frac{\partial S}{\partial \Theta} = \frac{\partial \Theta}{\partial \Theta}$

"New" ghost-surfaces are defined $\frac{\partial \Theta}{\partial \tau} = -\left(\frac{\delta S}{\partial \Theta}\right)$

 $1 \cap (\delta S)^2$ "New" quadratic-flux functional $\varphi_2 = \frac{1}{2}$ *S* $-$ | $d\Theta dt$ $\varphi_2 = \frac{1}{2} \int \int \frac{\delta x}{2}$ $\partial\!\!\!\!{}^{\mathscr{E}}$ $\equiv \frac{1}{2} \int \left(\frac{\delta S}{\delta} \right)^2 d\Theta$ $\int\!\!\!\int\!\!\!\left(\frac{\partial S}{\partial \Theta}\right) d$

Can choose unique angle transformation that

makes ghost-surfaces and QFMin surfaces identical

Action-gradient minimizing pseudo-orbits and almost-invariant tori

R.L.Dewar, S.R.Hudson & A.M.Gibson

Communications in Nonlinear Science and Numerical Simulations 17(5):2062, 2012

Generalized action-angle coordinates defined on island chains

R.L.Dewar, S.R.Hudson & A.M.Gibson Plasma Physics and Controlled Fusion 55:014004, 2013

Concluding remarks

 \rightarrow Straight-field line magnetic coordinates are very useful for describing integrable magnetic fields.

 \rightarrow The phase space of magnetic fields breaks apart slowly and in a well-defined way with the onset of perturbation.

 \rightarrow This suggests that the construction of "chaotic-coordinates", which are adapted to the invariant sets of chaotic fields, will similarly be useful.

 \rightarrow Ghost-surfaces and QFMin surfaces are a natural generalization of flux surfaces.

 \rightarrow Ghost-surfaces and QFMin surfaces can be unified by an appropriate choice of angle.

WHERE TO START? START WITH CHAOS

The fractal structure of chaos is related to the structure of numbers

Q) How do non-integrable fields confine field lines? A) Field line transport is restricted by KAM surfaces and cantori

- → *KAM surfaces are closed, toroidal surfaces; and stop radial field line transport*
- → *Cantori have many holes, but still cantori can severely "slow down" radial field line transport*
- → *Example, all flux surfaces destroyed by chaos, but even after 100 000 transits around torus the field lines cannot get past cantori*

THEN, ADD PLASMA PHYSICS

Force balance means the pressure is a *"fractal staircase"*

- • $\nabla p = \mathbf{j} \times \mathbf{B}$, implies that *i.e.* pressure is constant along a field line
- •Pressure is flat across the rationals (assuming no "pressure" source inside the islands) *[→] islands and chaos at every rational [→] chaotic field lines wander about over a volume*

• Pressure gradients supported on the "most-irrational" irrationals *[→] surviving "KAM" flux surfaces confine particles and pressure*

Diophantine Pressure Profile

is it pathological?

