Minimally constrained model of self-organised helical states in RFX

Graham Dennis¹, Stuart Hudson², David Terranova^{3,} Robert Dewar¹, and Matthew Hole¹

> 1Plasma Research Laboratory, Australian National University 2Princeton Plasma Physics Laboratory, Princeton University 3Consorzio RFX, Associazione Euratom-ENEA sulla Fusione

A self-organized helical state has been observed in RFP experiments

Magnetic Field Structure of the RFP

Limited confinement observed in "traditional" *axisymmetric* RFP states

Better confinement now observed when *helical* state forms in RFX-mod

A self-organized helical state has been observed in RFP experiments

Magnetic Field Structure of the RFP

Limited confinement observed in "traditional" *axisymmetric* RFP states

Better confinement now observed when *helical* state forms in RFX-mod

This structure occurs even for an axisymmetric plasma boundary, i.e. it is *self-organized.*

Ideal MHD can model the Single-Helical Axis state

P. Martin *et al.*, *Nuclear Fusion* **49**, 104019 (2009). [1] D. Terranova *et al.*, *PPCF* **52**, 124023 (2010). [2] $\mathbf{t} \in \mathcal{L}$ $\mathcal{O}(\mathcal{V})$. The monotonic profile of the axisymmetric \mathcal{V} (figure 1): helical contract \mathcal{V} : helical contract \mathcal{V} (figure 1): helical contract \mathcal{V} (figure 1): helical contract \mathcal{V} (figure 1):

Ideal MHD can model the Single-Helical Axis state

associated with the dominant mode (this single helical equilibrium—SHE) is single helical equilibrium—SHE σ tile must be carefully chosen and neglects pressure effects, the results are good in most cases and highlight the need for a …but the safety factor profile must be carefully chosen

P. Martin *et al.*, *Nuclear Fusion* **49**, 104019 (2009). [1] D. Terranova *et al.*, *PPCF* **52**, 124023 (2010). [2] $\mathbf{t} \in \mathcal{L}$ $\mathcal{O}(\mathcal{V})$. The monotonic profile of the axisymmetric \mathcal{V} (figure 1): helical contract \mathcal{V} : helical contract \mathcal{V} (figure 1): helical contract \mathcal{V} (figure 1): helical contract \mathcal{V} (figure 1):

Helical states with non-trivial topology are also observed

Double-Helical Axis state Single Helical Axis state

[1] P. Martin *et al.*, *Nuclear Fusion* **49**, 104019 (2009).

Helical states with non-trivial topology are also observed

Axis state

Axis state

Ideal MHD (with assumed nested flux surfaces) *cannot* model the Double-Helical Axis state.

[1] P. Martin *et al.*, *Nuclear Fusion* **49**, 104019 (2009).

Helical states with non-trivial topology are also observed

Axis state

Axis state

We seek a *minimally constrained* model for all RFX helical states

[1] P. Martin *et al.*, *Nuclear Fusion* **49**, 104019 (2009).

Taylor's theory: Plasma quantities are only conserved *globally* Ideal MHD: Plasma quantities conserved on *every flux surface*

Taylor's theory: Plasma quantities are only conserved *globally*

Ideal MHD: Plasma quantities conserved on *every flux surface*

Taylor's theory: Plasma quantities are only conserved *globally*

Ideal MHD: Plasma quantities conserved on *every flux surface*

Taylor's theory: Plasma quantities are only conserved *globally*

Ideal MHD: Plasma quantities conserved on *every flux surface*

Taylor's theory: Plasma quantities are only conserved *globally*

Ideal MHD: Plasma quantities conserved on *every flux surface*

Taylor's theory: Plasma quantities are only conserved *globally*

Ideal MHD: Plasma quantities conserved on *every flux surface*

$$
E = \int \left(\frac{p}{\gamma - 1} + \frac{1}{2}B^2\right) dV
$$

$$
E = \int \left(\frac{p}{\gamma - 1} + \frac{1}{2}B^2\right) dV
$$

…with conserved magnetic helicity

 $H =$ z
Z $\mathbf{A} \cdot \mathbf{B} \ dV$ (+ gauge terms)

$$
E = \int \left(\frac{p}{\gamma - 1} + \frac{1}{2}B^2\right) dV
$$

…with conserved magnetic helicity

 $H =$ z
Z $\mathbf{A} \cdot \mathbf{B} \ dV$ (+ gauge terms)

 $H = \Phi_1 \Phi_2$

$$
E = \int \left(\frac{p}{\gamma - 1} + \frac{1}{2}B^2\right) dV
$$

…with conserved magnetic helicity

$$
H = \int \mathbf{A} \cdot \mathbf{B} \ dV \quad \text{(* gauge terms)}
$$

…and conserved enclosed fluxes

 Φ Φ

 $H = \Phi_1 \Phi_2$

$$
E = \int \left(\frac{p}{\gamma - 1} + \frac{1}{2}B^2\right) dV
$$

…with conserved magnetic helicity

$$
H = \int \mathbf{A} \cdot \mathbf{B} \ dV \quad \text{(* gauge terms)}
$$

$$
\sqrt{\frac{\Phi_1}{\Phi_2}}
$$

…and conserved enclosed fluxes

 $H = \Phi_1 \Phi_2$

Motivation: with small resistivity, both energy and helicity will decay

$$
\dot{H} = \eta \int \mathbf{J} \cdot \mathbf{B} \, dV \sim \eta \sum_{k} k^{1} \mathbf{B}_{k}^{2}
$$

$$
\dot{E} = \eta \int \mathbf{J} \cdot \mathbf{J} \, dV \sim \eta \sum_{k} k^{2} \mathbf{B}_{k}^{2}
$$

... but energy more quickly (for short length-scale turbulence)

Multiple-Region Relaxed MHD (MRXMHD) extends Taylor Relaxation

- Relaxed regions \mathcal{R}_i , separated by
- nested, ideal, toroidal barrier interfaces \mathcal{I}_i , which \perp_i
- independently undergo Taylor relaxation.
- Magnetic islands and chaos are allowed between the toroidal current sheets
- Each plasma region has constant pressure, creating a piecewise constant pressure profile

Multiple-Region Relaxed MHD (MRXMHD) approaches ideal MHD as *N*→∞

 $N=1$ is Taylor's theory

 $N = \infty$ is Ideal MHD

Flux surfaces at $\phi = 0$

Ideal MHD flux surface chosen as ideal barrier

Ideal MHD flux surface chosen as ideal barrier

Ideal MHD flux surface chosen as ideal barrier

Comparison of VMEC and SPEC RFX-mod equilibria

Quasi-single helicity Single Helical Axis

Top figure source: P. Martin *et al.*, *Nuclear Fusion* **49**, 104019 (2009).

Conclusions

MRXMHD gives a good qualitative explanation of the high-confinement state in Reversed Field Pinches

With a *minimal* model we reproduced the helical pitch and structure of the Quasi-Single Helicity state in RFP

With MRXMHD we reproduced the second magnetic axis. This is the *first* equilibrium model to be able to reproduce the Double-Axis state.

MRXMHD is a well-formulated model that interpolates between Taylor's theory and ideal MHD

Future Work

More detailed experimental comparisons with RFX

Considering RFX helical states with pressure

Apply the same methodology to 3D structures in tokamaks

Generalize MRXMHD to include flow