Minimally constrained model of self-organised helical states in RFX

Graham Dennis¹, Stuart Hudson², David Terranova³, Robert Dewar¹, and Matthew Hole¹

> ¹Plasma Research Laboratory, Australian National University ²Princeton Plasma Physics Laboratory, Princeton University ³Consorzio RFX, Associazione Euratom-ENEA sulla Fusione

Australian National University

A self-organized helical state has been observed in RFP experiments

Magnetic Field Structure of the RFP

Limited confinement observed in "traditional" axisymmetric RFP states Better confinement now observed when *helical* state forms in RFX-mod

A self-organized helical state has been observed in RFP experiments

Magnetic Field Structure of the RFP

Limited confinement observed in "traditional" axisymmetric RFP states Better confinement now observed when *helical* state forms in RFX-mod

This structure occurs even for an axisymmetric plasma boundary, i.e. it is self-organized.

Ideal MHD can model the Single-Helical Axis state

[1] P. Martin et al., Nuclear Fusion 49, 104019 (2009).
[2] D. Terranova et al., PPCF 52, 124023 (2010).

Ideal MHD can model the Single-Helical Axis state

...but the safety factor profile must be carefully chosen

[1] P. Martin et al., Nuclear Fusion 49, 104019 (2009).
[2] D. Terranova et al., PPCF 52, 124023 (2010).

Helical states with non-trivial topology are also observed

Double-Helical Single Helical Axis state

[I] P. Martin et al., Nuclear Fusion 49, 104019 (2009).

Helical states with non-trivial topology are also observed

Axis state

Single Helical Axis state

Ideal MHD (with assumed nested flux surfaces) cannot model the Double-Helical Axis state.

[1] P. Martin et al., Nuclear Fusion 49, 104019 (2009).

Helical states with non-trivial topology are also observed

Axis state

Single Helical Axis state

We seek a *minimally constrained* model for all RFX helical states

[1] P. Martin et al., Nuclear Fusion **49**, 104019 (2009).

Taylor's theory: Plasma quantities are only conserved globally Ideal MHD: Plasma quantities conserved on every flux surface

Taylor's theory: Plasma quantities are only conserved globally

Ideal MHD: Plasma quantities conserved on every flux surface

Taylor's theory: Plasma quantities are only conserved globally

Ideal MHD: Plasma quantities conserved on every flux surface

Taylor's theory: Plasma quantities are only conserved globally

Ideal MHD: Plasma quantities conserved on every flux surface

Taylor's theory: Plasma quantities are only conserved globally

Ideal MHD: Plasma quantities conserved on every flux surface

Taylor's theory: Plasma quantities are only conserved globally

Ideal MHD: Plasma quantities conserved on every flux surface

$$E = \int \left(\frac{p}{\gamma - 1} + \frac{1}{2}B^2\right) dV$$

$$E = \int \left(\frac{p}{\gamma - 1} + \frac{1}{2}B^2\right) dV$$

... with conserved magnetic helicity

 $H = \int \mathbf{A} \cdot \mathbf{B} \, dV \quad \text{(+ gauge terms)}$

$$E = \int \left(\frac{p}{\gamma - 1} + \frac{1}{2}B^2\right) dV$$

...with conserved magnetic helicity

$$H = \int \mathbf{A} \cdot \mathbf{B} \, dV \quad \text{(+ gauge terms)}$$

 $H = \Phi_1 \Phi_2$

$$E = \int \left(\frac{p}{\gamma - 1} + \frac{1}{2}B^2\right) dV$$

...with conserved magnetic helicity

$$H = \int \mathbf{A} \cdot \mathbf{B} \, dV \quad \text{(+ gauge terms)}$$

...and conserved enclosed fluxes

 $H = \Phi_1 \Phi_2$

$$E = \int \left(\frac{p}{\gamma - 1} + \frac{1}{2}B^2\right) dV$$

...with conserved magnetic helicity

$$H = \int \mathbf{A} \cdot \mathbf{B} \, dV \quad \text{(+ gauge terms)}$$

...and conserved enclosed fluxes

 $H = \Phi_1 \Phi_2$

Motivation: with small resistivity, both energy and helicity will decay

$$\dot{H} = \eta \int \mathbf{J} \cdot \mathbf{B} \, dV \sim \eta \sum_{k} k^{1} \mathbf{B}_{k}^{2}$$
$$\dot{E} = \eta \int \mathbf{J} \cdot \mathbf{J} \, dV \sim \eta \sum_{k} k^{2} \mathbf{B}_{k}^{2}$$

... but energy more quickly (for short length-scale turbulence)

Multiple-Region Relaxed MHD (MRXMHD) extends Taylor Relaxation

- Relaxed regions \mathcal{R}_i , separated by
- nested, ideal, toroidal barrier interfaces \mathcal{I}_i , which
- independently undergo Taylor relaxation.
- Magnetic islands and chaos are allowed between the toroidal current sheets
- Each plasma region has constant pressure, creating a piecewise constant pressure profile

Multiple-Region Relaxed MHD (MRXMHD) approaches ideal MHD as $N \rightarrow \infty$

N = 1 is Taylor's theory

 $N = \infty$ is Ideal MHD

Flux surfaces at $\phi = 0$

Ideal MHD flux surface chosen as ideal barrier

Ideal MHD flux surface chosen as ideal barrier

Ideal MHD flux surface chosen as ideal barrier

Comparison of VMEC and SPEC RFX-mod equilibria

Quasi-single _____ Single Helical _____ Axis

Top figure source: P. Martin et al., Nuclear Fusion 49, 104019 (2009).

Conclusions

MRXMHD gives a good qualitative explanation of the high-confinement state in Reversed Field Pinches

With a *minimal* model we reproduced the helical pitch and structure of the Quasi-Single Helicity state in RFP

With MRXMHD we reproduced the second magnetic axis. This is the *first* equilibrium model to be able to reproduce the Double-Axis state.

MRXMHD is a well-formulated model that interpolates between Taylor's theory and ideal MHD

Future Work

More detailed experimental comparisons with RFX

Considering RFX helical states with pressure

Apply the same methodology to 3D structures in tokamaks

Generalize MRXMHD to include flow