Stepped Pressure Equilibrium Code computes extrema of the multi-region, relaxed MHD energy principle

- The plasma is partitioned into N "relaxed volumes", separated by "ideal interfaces".
- Minimize the total energy, subject to the constraints of conserved fluxes and helicity in each region $\sum_{i=1}^{N} \left[\int f_{i} \left(p_{i} + B^{2} \right) \mu_{i} \left(\int f_{i} + D_{i} + D_{i} \right) \right]$

$$F \equiv \sum_{i=1} \left[\underbrace{\int_{\mathcal{V}_i} dv \left(\frac{p}{\gamma - 1} + \frac{B^2}{2} \right)}_{energy} - \frac{\mu_i}{2} \left(\underbrace{\int_{\mathcal{V}_i} dv \mathbf{A} \cdot \mathbf{B}}_{helicity} - K_i \right) \right]$$

- In the relaxed volumes, $\nabla \times \mathbf{B} = \mu \mathbf{B}$; and islands, chaotic fields are allowed.
- Across the ideal interfaces, $[[p+B^2/2]]=0$, and arbitrary pressure profiles are allowed.
- Main publication: [Hudson, Dewar, Dennis, Hole et al., PoP 2012]
- If N = 1, obtain a globally-relaxed, Taylor state.
- If N = 2, explains helical states in RFP, shown below [Dennis, Hudson, et al. PRL, 2013]
- If $N \rightarrow \infty$, recover ideal MHD $\nabla p = \mathbf{j} \times \mathbf{B}$ [Dennis, Hudson *et al.* PoP, 2013]

Overview of RFX-mod results,

P. Martin et al., *NF*, (2009) *Fig.6... transition from a QSH state . . to a fully developed SHAx state .*

Numerical Calculation using Stepped Pressure Equilibrium Code, G. Dennis et al., *PRL, (2013) Topological features correctly reproduced*

SPEC: ongoing and future efforts:

Theoretical developments

- a. Included flow into MRxMHD energy functional [Dennis, Hudson, et al. PoP 21:042501, 2014].
- b. Included anisotropy and flow into MRxMHD energy functional [Dennis, Hudson, et al. PoP 21:072512, 2014].

• Numerical developments

- a. Allow for general geometry (i.e. relax stellarator symmetry "up-down" symmetry constraint); completed!
- b. Free-boundary capability; almost complete;

• Recent applications

- a. Computed 1/x and δ -function singular currents in ideal equilibria; completed! [Loizu, Hudson et al . 2014]
- b. Benchmarked with non-trivial, semi-analytic equilibrium model; completed! [Loizu, Hudson et al . 2014]

• Planned activities

- a. Compute non-linear ideal kink equilibrium in cylindrical geometry; compare with analytical predictions; allow for relaxation and compute 3D equilibrium solution with islands; due 2014;
- b. Compute second variation of energy functional to extend SPEC to calculate stability; almost complete; due 2014;
- c. Include flow, pressure anisotrophy into SPEC; due 2015, ...
- d. Apply to W7X, LHD, . . .; due 2015, . . .