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Abstract

1) The effort to obtain a set of “hydromagnetic” equations for a
magnetized collisionless plasma started nearly 60 years ago by
Chew, Goldberger and Lowe. Many attempts have been made
ever since, by Freiman, Davidson, and Kulsrud at PPPL. Here,
we will show the derivation of a set of collisionless MHD
equations from the gyrokinetic perspective. This set of
equations 1s energy conserving and, in the absence of
fluctuations, recovers the usual MHD equilibrium.



2) With this, we then propose to couple

(A) GTS [1] - a global gyrokinetic turbulence code, based on the
newly developed electromagnetic capability [2], with

(B) SPEC [3] - an MHD equilibrium code,
for the purpose of self-consistently obtaining a new magnetic
configuration which reduces the anomalous transport due to
microturbulence.

 The proposed iterative scheme, which requires the two code to
“talk to each other,” 1s based on a recent realization [4] that connects
the gyrokinetic Vlasov-Maxwell equations with the MHD
equilibrium equations via the gyrokinetic vorticity equation and
Ohm’s law.

[1] W. X. Wang et al., PoP 13, 092505 (2006)

[2] E. A. Startsev et al., Sherwood Conference, NYU, NY (2015)
[3] S. R. Hudson et al., PoP 19, 112502 (2012)

[4] W. W. Lee, Sherwood Conference, NYU, NY (2015).



Darwin Electromagnetic (finite-B) Gyrokinetic Equations
e Original Vlasov Equation F = F(x,v,t)
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» Using the Lagragian of L = imeQ —qo + %v - A to obtain

(see, for example, Corben and Stahle, 1966)
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» Gyrokinetic Vlasov Equation
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» Gyrokinetic Vlasov Equation in General Geometry

[Lee and Qin, PoP (2003), Porazic, PhD thesis (2010)]
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* Including only the parallel vector potential, Startsev et al. have studied low (m,n) as well as high
(m,n) tearing modes [APS 2004, Sherwood 2005] using GTS [Wang et al., PoP 2003].



Gyrokinetic Current Densities

[Qin, Tang, Rewoldt and Lee, PoP 7, 991 (2000); Lee and Qin, PoP 10, 3196 (2003).]
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» Gyrokinetic MHD Equations:
1) A reduced set of equations in full toroidal geometry obtained from gyrokinetic Vlasov equation:
- For kipi <1 F—oF  ¢—=¢ A =4 v, AL >0

2) Together with gyrokinetic Poisson’s equation
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» Gyrokinetic MHD Equations (cont.):

c
-- Pressure Driven Current: Ji = B Z b X Vpq
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« MHD Equilibrium

1. For a given pressure profile, we obtain the pressure driven current from
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2. We then solve the coupled equations of
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3. If we look for a solution for ¢ — 0 which, in turn, gives e —0 ,

this 1s then the equilibrium solution that satisfies the quasineutral condition of
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4. The GK vorticity equation retains all the toroidal physics, different than Strauss® equation [PF 77]

5. Perpendicular current is consisted of both a divergent free diamagnetic current and a magnetic
drift current. Only the latter was originally included in Lee and Qin [PoP, 2003].



Reduced MHD Equations vs. GyrokineticcMHD Equations

* GK Three-field Equations for k| p; < 1 w/o geometric simplification {Lee and Qin PP ‘o3l

d o 7%24 3 2 7&24 d
d—VL¢+—(b-V)V A” —47T—ZVJ_ -JJ_QCZO
t c c
1814“ P v¢ . \ general geometry
c Ot -
dpa
ar Y
d 0 c_ - =~
L _ Y & b
G- o BYoXPoV
d C % %
M= 5 Pal(V X Bo) 1 +pabo x (VinBo)

(6

* Reduced High- Three-Field MHD Equations {Strauss PF 77}
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Based on this interesting property, we propose the following:

1. Use SPEC to give basic magnetic configuration to GTS

2. Use GTS to study microturbulence and to produce perturbed
pressure and current

3. Give these information back to SPEC and use SPEC to give a
new magnetic configuration to GTS and so on ........

Since we use the nonlinearly modified profiles at every iteration and
the equilibrium solutions are supposed to mimic the fluctuation free
states, we should expect the system to evolve gradually to a state
where fluctuations become less.



d f PIC code solving modern GK equation in conservative form
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New, improved weight scheme ensuring phase space imcompressibility

Full geometry, global simulation (without local ballooning approximation)
— real space field solvers with field-line-following mesh

— retains all toroidal modes and full channels of nonlinear energy couplings
— enable to treat modes with low-n, with finite k| (e.g., shear flow mode)

Fully kinetic electrons (both trapped and untrapped electron dynamics)

Linearized Fokker-Plank operator with particle, momentum and energy

conservation for i-i and e-e collisions; Lorentz operator for e-i collisions

Include neoclassical physics self-consistently in turbulence simulations

— significant impact on some important transport & confinement issues
(bootstrap current, poloidal flow, GAMs and particle transport, etc.)

Applied to wide experiments for various physics studies:
NSTX /U, DIII-D, C-MOD, KSTAR and ASDEX-U



(@1

MHD equilibrium = constrained, minimum-energy state
with given pressure, boundary, ...

B2
. SPEC minimizes the global plasma energy, W = / <— -+ —) dv

where the pressure p(v) is a given function of toroidal flux, .

N
. The volume integral is partitioned (and parallelized), / dv = Z / dv
R

. The simplest constraints are conserved helicity: H, = / A -Bdv = H;, = const. in each R;

and the “ideal-constraint”: i 0B =V x (£ xB) at each Z;

. The multl— egion, relaxed MHD (MRxMHD) energy functional is

F= Z[W (H; — H“,)] [Hole, et al. JPP, 72:1167, 2006]

The equlhbrlum state satisfies V x B = uB in each R;, and [[p + B?/2]] = 0 across each Z;.

N =1, recover globally-relaxed, Taylor state.

If N - o0, recover globally-ideal, Vp =j x B [Dennis et al. PoP, 20:032509, 2013]

If N is ﬁnite, flat pressure and islands at resonances; pressure jumps at arbitrarily many KAM surfaces.

. SPEC [Hudson et al. PoP, 19:112502, 2012] is the only equilibrium code that, simultaneously,

(1) is based on an energy functional, (2) computes magnetic field consistent with given pressure profile,
(3) accurately computes singular currents in ideal-MHD equilibria [Loizu et al. PoP, 22:022501, 2015],
(4) allows for partially relaxed fields, magnetic islands and chaos, (5) is parallelized.



Multi-region, relaxed MHD can include
pressure anistropy and flow

- two papers on MRxMHD with flow have already been published

- required modifications to SPEC are minor



Summary

* A set of gyrokinetic MHD equations have been derived
and 1ts extension by including high-order moments 1s
underway.

» A white paper entitled “A Multiphysics and Multiscale
Coupling of Microturbulence with MHD Equilibria,” by Lee,
Startsev, Hudson, Wang and Ethier has first been presented to
the DoE’s Workshop on Integrated Simulations in May this

year.

- The purpose 1s to use GTS and SPEC together in an attempt to minimize
turbulence and transport. This approach is based on an iterative procedure, which
first “decouple” the transport problem from the equilibrium problem, and then to
“couple” them through global parameter exchanges.



