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1) The effort to obtain a set of “hydromagnetic” equations for a 
magnetized collisionless plasma started nearly 60 years ago by 
Chew, Goldberger and Lowe. Many attempts have been made 
ever since, by Freiman, Davidson, and Kulsrud at PPPL. Here, 
we will show the derivation of a set of collisionless MHD 
equations from the gyrokinetic perspective. This set of 
equations is energy conserving and, in the absence of 
fluctuations, recovers the usual MHD equilibrium.

Abstract



2) With this, we then propose to couple
 
    (A) GTS [1] - a global gyrokinetic turbulence code, based on the 
newly developed electromagnetic capability [2], with 
    (B) SPEC [3] - an MHD equilibrium code, 
for the purpose of self-consistently obtaining a new magnetic 
configuration which reduces the anomalous transport due to 
microturbulence. 

the two code to 
“talk to each other,” is based on a recent realization [4] that connects 
the gyrokinetic Vlasov-Maxwell equations with the MHD 
equilibrium equations via the gyrokinetic vorticity equation and 
Ohm’s law.              

[1] W. X. Wang et al., PoP 13, 092505 (2006)
[2] E. A. Startsev et al., Sherwood Conference, NYU, NY (2015)
[3] S. R. Hudson et al., PoP 19, 112502 (2012)
[4] W. W. Lee, Sherwood Conference, NYU, NY (2015).  
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to re-write it as 

(see, for example, Corben and Stahle, 1966) 

F ⌘ F (x,v, t)

F ⌘ F (x, vk, µ/B, t)
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(m,n) tearing modes [APS 2004, Sherwood 2005] using GTS [Wang et al., PoP 2003].  



Gyrokinetic Current Densities
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1. For a given pressure profile, we obtain the pressure driven current from

2. We then solve the coupled equations of 
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4. The GK vorticity equation retains all the toroidal physics, different than Strauss‘ equation [PF 77] 

5. Perpendicular current is consisted of both a divergent free diamagnetic current and a magnetic 
drift current. Only the latter was originally included in Lee and Qin [PoP, 2003].  



Reduced MHD Equations vs. Gyrokinetic-MHD Equations
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1. Use SPEC to give basic magnetic configuration to GTS

2. Use GTS to study microturbulence and to produce perturbed 
pressure and current 

3. Give these information back to SPEC and use SPEC to give a 
new magnetic configuration to GTS and so on ........

Since we use the nonlinearly modified profiles at every iteration and 
the equilibrium solutions are supposed to mimic the fluctuation free 
states, we should expect the system to evolve gradually to a state 
where fluctuations become less. 
  

 



GTS - a global gyrokinetic code with robust capability to
simulate turbulence & transport for tokamak experiments

• δf PIC code solving modern GK equation in conservative form

∂fa

∂t
+

1
B∗∇Z · ( ˙⃗

ZB∗fa) =
∑

b

C[fa, fb]

• New, improved weight scheme ensuring phase space imcompressibility

• Full geometry, global simulation (without local ballooning approximation)

– real space field solvers with field-line-following mesh

– retains all toroidal modes and full channels of nonlinear energy couplings

– enable to treat modes with low-n, with finite k∥ (e.g., shear flow mode)

• Fully kinetic electrons (both trapped and untrapped electron dynamics)

• Linearized Fokker-Plank operator with particle, momentum and energy
conservation for i-i and e-e collisions; Lorentz operator for e-i collisions

• Include neoclassical physics self-consistently in turbulence simulations

– significant impact on some important transport & confinement issues

(bootstrap current, poloidal flow, GAMs and particle transport, etc.)

• Applied to wide experiments for various physics studies:
NSTX/U, DIII-D, C-MOD, KSTAR and ASDEX-U



MHD equilibrium ≡ constrained, minimum-energy state!
with given pressure, boundary, . . . !



Multi-region, relaxed MHD can include!
!

!

!



Summary

and its extension by including high-order moments is 
underway. 

Coupling of Microturbulence with MHD Equilibria,” by Lee, 
Startsev, Hudson, Wang and Ethier has first been presented to 

year.
 - The purpose is to use GTS and SPEC together in an attempt to minimize 
turbulence and transport. This approach is based on an iterative procedure, which 
first “decouple” the transport problem from the equilibrium problem, and then to 
“couple” them through global parameter exchanges.


