An examination of the
chaotic magnetic field
near the separatrix of

magnetically confined
plasmas

S.R.Hudson (PPPL) & Y. Suzuki (NIFS)



The most important theoretical/numerical calculation
in the study of magnetically confined plasmas
is to determine the magnetic field.

1) MHD equilibrium codes (such as HINT-2) determine the structure of
the magnetic field, allowing for islands and chaotic fieldlines, in
stellarators, perturbed tokamaks, . .

2) It is always useful, and often essential, to know the chaotic structure
of the fieldlines.

3) The efficiency, reliability and accuracy of such codes depend on

accurate, robust, fast numerical routines.
1) Constructing efficient subroutines requires tedious, careful work!



So, given the vector field, B(x), what are the

properties of the integral-curves = fieldlines?
1. The magnetic field, B(x), is a function of x = Rcos¢ i+ Rsing j+ Z k.

er(p) = cospi + sing]j
2. Using cylindrical coordinates, eg(¢p) = —singi 4+ cos¢]j
(S = k

3. The magnetic field is specified by 3 functions, B¥, B® and B?:

B =B%(R,¢,Z)er+ B?R,0,Z) ey + B(R,¢,Z) ey.

4. Really, only 2 functions are required; using B =V x A and gauge freedom

le.g. 2 functions = toroidal, poloidal flux; Hamiltonian formalism, B = V x (V60 — x x V()]

5. Given B(x), what are the properties of the fieldlines?

The vector field may be continuous & smooth, but the fieldlines may be chaotic!

Where is the magnetic axis? Are there “good-flux-surfaces”? Where is the plasma edge?



The simplest diagnostic: Poincaré plot:
from given (R,Z), follow along B a “distance” of A¢p=2n

1. A magnetic fieldline, x(¢) = R(¢p)er(p)+Z(d)ez,

is an integral curve of B, i.e. dx = B, ,
. drR _BR . dZ B? S

R=—=—, 7Z7=—=— (1)

dp B¢ d ¢ :

2. A Poincaré section is any plane
“cutting across” the magnetic field.

For toroidal magnetic confinement devices,
usually choose the plane ¢ = 0.

3. From any starting point, e.g. (R, ¢, Z) = (Ry,0, Zy),
integrate the o.d.e.s in Eqn(1), (e.g. Runge-Kutta)
e.g. around N = 1000, toroidal periods, A¢ = 2.

Can “visualize” the magnetic field.
t= 000000
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The magnetic axis and X-point are fixed points of the
Poincaré mapping; which may be found, for example,

using fieldline tracing + Newton iterations.
1. Introduce the mapping from ¢ =0 to ¢ = 27

4

2w
Rl(RO, Z()) / R(R, 0, Z) d¢, where R = BR/qu
0
M : < (1)

2T
Z1(Ro, Z) / Z(R,¢,7) dp, where Z = B?/B?
0

\

2. Magnetic fieldline starting at (Ro+ 0 Ro, Zo + 6 Zp) closes on itself after A¢p = 27 if
Ry +0R; . R4 n Or,R1, 0Oz,R1 ORy . Ry + 0 Ry (2)
Zv+6Zy )\ 7 Or, %1, 0z,%1 6Zy )\ Zo+dZ

3. The behavior of fieldlines nearby a given fieldline is determined by the
: _( Or,R1, 0z,Rq

tangent mapping, VM = ( On . Oy 7y ) | |
OrR 0OzR

also determined by o.d.e. integration, d, VM = ( Ol 0,7

).vM



Example: locating the magnetic axis using fieldline
tracing method + Newton iterations.
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1. From suitable starting guess, iterations converge quickly.

2. To locate the magnetic axis using o.d.e. fieldline tracing method with Newton
iterations requires ~ 10° evaluations of B(x).



“Global integration” is much faster:

the action integral is a functional of a curve in phase space.
1. The action, S, is line integral along a “trial” curve {C : ¢ = ¢q(t)},
of the Lagrangian, £L =T(q,q) — U(g,t), S= /ﬁ(q, q,t)dt
e

C
kinetic  potential

d
2. For magnetic fields, B=VxA, §= /A-—X d¢, along {C: R= R(¢),Z = Z(¢)}
c

dg

3. Action extremizing curves = magnetic fieldlines.

4. Use a global representation, e.g. R(¢) = > R, cos(n¢) and Z(¢) = > Z,, sin(ne),

0S
OR,

0S

— /OQW(BZ _ B¢Z) R cos(ng) do, 97 = /0277(_33 + B¢R) R sin(n¢) d¢ (1)

5. Can use multi-dimensional Newton method, and FFT’s, to set

Fr.,=[B?—-B*Z)R], =0 Fz.,=[(—BE + B’R)R],, =0

6. About 100x faster: requires ~ 10! evaluations of B(x)
— Vector potential, A, is not required;
— global integration comparatively immune to exponential errors.



The tangent mapping determines the behavior of
nearby fieldlines.
Chaos: nearby fieldlines diverge exponentially.

1. The Lyapunov exponent, A\, determines the average rate of exponential
separation of initially-nearby fieldlines, e.g. x(0) and x(0) + dx(0),

1 )
Assuming [px(¢) ~  [8x(0), then A= lm i - Clox 57

"~

exponential

2. Rather than following nearby fieldlines and then taking s %H)Il
z(0)—0

it is better to work in “tangent space”, dx(¢) = VM(¢) - dx(0).

3. If A > 0, there is extreme sensitivity to initial conditions.

4. For some fieldlines (e.g. on good-flux-surfaces) nearby fieldlines diverge linearly,
e.g. 0x(¢) ~ const. ¢. Eqn(1) gives A(¢) ~ log ¢/ .




The Lyapunov exponent can distinguish chaotic
trajectories,

but it is computationally costly.
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1. A large distance in ¢ is required to distinguish '
“linear” motion from weakly- “exponential”. v
2. Fieldline tracing methods 1
(e.g. Poincaré plots, Lyapunov exponents, . . .) c“'":&,_

are widely used to determine the structure of chaotic x e
fields, but they are very costly and perform poorly. e



“Global integration” can robustly find the
action minimizing curve = X-point

. T dx
1. Action integral: S|R,,7Z,| = A - — do.
0 d¢
2 45 _ /2W(+BZ — B?Z) cos(no) 45 _ /QW(—BR + B?R) sin(no)
CdR, Jy CodZ, ),
Frm Frm
AR, dz, dS| Ry, Zn
3. Gradient flow: 1t = —FrnlR0u, 2], — = —Fz,[Rn, 2, : SR | < 0.
dt ’ dt ’ dt
4. However, for the action to have a minimum, the curve must be constrained:
must choose R(qb) = R[Z(gb)], ©-8& FR[R[Z(qb)]’ Z(qb)] =0, } These constraints must be invertible.
or Z(¢) = Z|R(d)], e.g. Fz[R(¢), Z[R(¢)]] = 0.
dS[Z(¢)] dz dS[R(¢)] g,Z/ dR
=|Fr=—— +Fz | — <0 = ( F F 0. (1
dr az ) S T rt Lrp ) g <0 W

5. Even (i) from a “poor” initial guess, and (ii) with V- B = ¢, and (iii) with “strong
chaos”, i.e. large-\ ; this method will robustly find the action-minimizing, X-curve.

(This will be useful for locating the homoclinic tangle, but the “gradient-flow” method is slow.)



“Global integration” can robustly find the

action minimizing curve = X-point

From “arbitrary” initial guess,
e.g. from close to the O-point,
the gradient-flow method converges on X-point,
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t=R00000 even if the initial guess is outside the separatrix.



The magnetic axis is a “stable” fixed point (usually),
and the X-point is “unstable”.
Consider the eigenvalues of tangent mapping:

L.

11.

Consider following a fieldline nearby a fixed point, xg+0x, around many toroidal
periods:

VM. ...VM x = (VM)" - 0x = (VM)" - (av, +bVs) =a X, v, + b A} v

"

tangent mapping eigenvectors

. The determinant, [VM| = 1 at fixed points (because V - B = 0),

so the eigenvalues are either:

complex congugates, A = a + 01, A = a — B, and the fixed point is stable:

nearby trajectories rotate: rotational-transform on axis, tan+ = 3/a.

real reciprocals, A\, > 1 and A; = 1/)\,, and the fixed point is unstable
nearby trajectories diverge: A]! — oo as n — oo, AL — 0 as n — oo;

v, indicates unstable direction, v indicates stable direction.




The stable/unstable direction forwards in ¢ is the
unstable/stable  direction backwards in ¢.

1. x € “stable manifold ” if M"(x) — xg as n — +00.

all magnetic fieldlines with “starting point” x = xg + d vs,
where d € [e)s, €], and follow backwards in ¢.

separatrix

2. x € “unstable manifold” if M"(x) — x¢ as n — —o0.

all magnetic fieldlines with “starting point” x = xg + d v,
where d € [e/A\y, €], and follow forwards in ¢.

3. For the integrable case, the unstable manifold
leads into the stable manifold, and there is a
“clean” separatrix. L NN

t= 00000U



For perturbed magnetic fields, the separatrix splits.
A “partial” separatrix can be constructed.

1. “Homoclinic” points, x; = intersection of stable, unstable manifolds,
M"(xp) — xp as n — £ .

2. To locate xp, find (dy,ds),
MF (xo + dy V) = M7 (%0 + ds ),

if x;, is homoclinic,

so is MF(xy,), Vk.

3. Partial separatrix
= “smooth” part of unstable manifold
+ “smooth” part of stable manifold.




For JT60-SA, the partial separatrix is strongly
influenced by an “almost” double-null.

© JT60-SA




Consider heat transport:
rapid transport along the magnetic field,
slow transport across the magnetic field.

1.

. Simplest transport model: anisotropic diffusion,

Transport along the magnetic field is unrestricted:

e.g. parallel random walk with long steps & collisional mean free path.

particle “knocked”

Transport across the magnetic field is very small: red
onto nearby field line

e.g. perpendicular random walk with short steps ~ Larmor radius.

oT
E =V- (KJ”VHT + H,J_VJ_T) + 5 HJL/K,H ~ 10719 T = temperature; S = source;

Because of the extreme anisotropy, even the simplest model of transport presents numerical challenge!
— extreme numerical resolution is required.

. For computational efficiency, introduce “local fieldline coordinates”.

Construct coordinates (a, 3,() s.t. B = Va x Vf3, by local fieldline tracing;

Parallel and perpendicular directions are treated separately, B -V = B¢8C, which reduces numerical diffusion.

o (B®oT
The parallel diffusion operator becomes VﬁT = B? — (— —) .
o¢ \ B2 d¢

(This numerical algorithm is currently being benchmarked for speed & accuracy with existing HINT algorithm.)



Anisotropic heat transport + unstable manifold = ?
What is the temperature in the “chaotic edge” ?

1. JT60-SA with chaotic edge, B calculated using HINT-2.
2. To investigate the effect of the unstable manifold on T°

(a) must numerically calculate heat transport v/

(b) must accurately construct unstable manifold v/
3. These tasks are completed and implemented into HINT-2.

— now we can make quantitative calculations

— ongoing research.




Anisotropic heat transport + unstable manifold = ?
What is the temperature in the “chaotic edge” ?




OCULUS: the eye into chaos

1. OCULUS® : a user-friendly, theoretically-sophisticated, imaginatively-named, library of

subroutines for analyzing the structure of non-integrable (chaotic) magnetic fields
* freely available online at http://w3.pppl.gov/~shudson/Oculus/oculus.pdf
* 9 subroutines are presently available

2. This library is integrated into HINT-2, M3D-C1, SPEC, and NIMROD (under construction), . ..

3. Ourlong-term goal is for all high-performance codes to use shared, co-developed, freely-
available, numerical libraries.

4. A community-based approach to large-scale computing.

1. Many codes ask the same questions, i.e. need the same subroutines.

Where is the last, closed, flux surface? Where is the unstable manifold? Where are the magnetic islands, and how big are they?
Where is the magnetic axis? How “chaotic” is the magnetic field?


http://w3.pppl.gov/~shudson/Oculus/oculus.pdf
http://w3.pppl.gov/~shudson/Oculus/oculus.pdf

Oculus: The Eye into Chaos

S.R. Hudson*
Princeton Plasma Physics Laboratory, PO Box 451, Princeton NJ 08543, USA

Y. Suzukif
National Institute for Natural Sciences, National Institute for Fusion Sciences, 322-6 Oroshi, Toki, 509-5292, Japan
(Dated: August 26, 2015)

The Oculus package is a suite of magnetic field diagnostic subroutines (under continual devel-
opment) for non-integrable, toroidal magnetic fields used in the numerical simulation of magnetic
confinement of fusion-research plasmas. Oculus is freely distributed, with the expectation that users

will promptly inform the developer(s) of any errors.

Su

ggestions and requests are welcome, indeed encouraged!

Contents

I. user supplied magnetic field
II. macro expansion and compilation

II1. error flag

IV. subroutines
A. gaO0aa : find the magnetic axis;
B. ho00aa : find the homoclinic points (of the stable/unstable manifold);
C. ec00aa : find action extremizing curves using global integration;
D. tr00aa : measure rotational-transform;
E. pp00aa : fieldline tracing for Poincaré plot, calculate Lyapunov exponent:
F. qf00aa : construct quadratic-flux minimizing surface using pseudo fieldline following algorithm;
G. aal0aa : construct vector potential in toroidal coordinates;
H. ad00aa : anisotropic diffusion using locally-field-aligned coordinates;
I. beO0aa : interpolate set of toroidal surfaces;
References
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So far, have used cylindrical coordinates (R,$,Z).
s it better to use toroidal coordinates, ({,6,p) ?

1. Toroidal coordinates (flux-coordinates) can be very useful,

e.g. straight-fieldline coordinates, Boozer coordinates, . .

i. easy to locate periodic orbits, cantori,

ii. easy to compute island widths,

iii. to a good approximation, pressure= p()),

2. Previously constructed “chaotic coordinates” AN

= “almost” straight-fieldline coordinates

for the chaotic edge of LHD. 0

3. But, straight-fieldline coordinates are singular

% Fig. 6. Hudson & Suzuki, %
at the separatrix! — =

[ PoP, 21:102505, 2014 ]

This time, my research goal is to treat R
the coordinate singularity at the separatrix . . . . ... ... ... ... % ... ....




Question: can a toy Hamiltonian be “fit” to the partial
separatrix to provide suitable, “background” toroidal

coordinates?
“Toy” 1. Consider “toy” Hamiltonian: ASDEX-U

1
Hr = 5:132 + 2y° + 3y°. (1)

Action-angle coordinates for Hr have
same singular structure as straight-

fieldline coordinates for single-null toka- |/
maks.

t= 000113
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Question: can a toy Hamiltonian be “fit” to the partial
separatrix to provide suitable, “background” toroidal
coordinates?

1. Consider “toy” Hamiltonian: %
1
Hr = 5;1:2 + 2y° + 3y, (1)

Action-angle coordinates for Hr have
same singular structure as straight-
fieldline coordinates for single-null toka-
maks.

. Construct points that lie on stable,
unstable manifold up to “primary in-
tersection point”

3. Fit “Hamiltonian”, H = Z hijx'y’
2%
to “partial” separatrix, with constraints
at X-point and O-points.

4. Contours of H provide suitable “back-
ground”, toroidal coordinates for fur-
ther calculations.

=



Ghost surfaces, a class of almost-invariant surface, are
defined by an action-gradient flow between the
action minimax and minimizing fieldline.

oS
1. Action, S|C] = f A - dl, and action gradient, 20 = /9B’ — pBS.
C
aS A C 9 . . b 9 . ) .
2. Enforce 5, = 0B°—/gB’ =0, i.e. invert § = BY/B°® to obtain p = p(0, 0, ¢); so that trial curve
P

is completely described by 6((), and the action reduces from S = S|p((),0(()| to S = 5[6(C
pletely y 0(C) p(€), 0(¢)] [6(C)]

90(¢;T) . 95]0] | L |
= ————— |, where 7 is an arbitrary integration parameter.

or 00

3. Define action-gradient flow:

4. Ghost-surfaces are constructed as follows:

i. Begin at action-minimax (“O”, “not-always-stable”) periodic fieldline, which is a saddle;
ii. initialize integration in decreasing direction (given by negative eigenvalue/vector of Hessian);
iii. the entire curve “flows” down the action gradient, 0,0 = —dy.S;

. . . . ___.---""f'—'_#_._-___-_-_h\“\--.__
iv. action is decreasing, 0,5 < 0; ,//[/_\

v. finish at action-minimizing (“X”, unstable) periodic fieldline.

vi. ghost surface described by x((, 7), where r is a fieldline label. M




The construction of extremizing curves of the action
generalized extremizing surfaces of the quadratic-flux

1.

08

08 08 08 :
= — +8p—— |, where | — = \/gB” — p\/gB* —— =6,/¢gB* — \/gB? |
45 /CdC (59 90 op ap) , where | = V9 I and o 0vg NG

oS

. Extremal curves satisfy g—g =0, i.e. p= B”/BS, and 9, = 0, i.e. § = B?/B¢.

P

Introduce toroidal surface, p = P(#,¢), and family of angle curves, 0,(¢) = o+ pC/q + 0(C), where
a is a fieldline label; p and ¢ are integers that determine periodicity; and 67(0) = é(QTrq) =0.

On each curve, p,(¢) = P(0,(¢),¢) and 0,(¢), can enforce g—s = 0; generally v = g—g = (.
0

The pseudo surface dynamics is defined by § = B? /BS and p = Oy P 6 + OcP.

v

. Corresponding pseudo field B, = p B¢ e, + 0 BC eg + BCeC; simplifies to B, = B — — e,,.

V9

1 35S\ *
Introduce the quadratic-flux functional: | 5 = 3 f f dOd( (%)

. Allowing for d P, the first variation is dps = //deC 0P \/g (B989 + Biag) V.

Euler-Lagrange for QFMs



Alternative Lagrangian integration construction:
QFM surfaces are families of extremal curves of the
constrained-area action integral.

1. Introduce F'(p,0) = f A-dl—v (f OV - dl — a,) , where p = {p;}, 6 = {6;};
C C

2mq
where v is a Lagrange multiplier, and a is the required “area”, / 0(¢) dc¢.
0

2. An identity of vector calculus gives §F" = ] dl x (Vx A —vV0O x V() -dl,

C
extremizing curves are tangential to B — vV x V(=B — Lep =B,.
V9
: : .. .. OF OF
3. Constrained-area action-extremizing curves satisfy 99 — 0 and 98, — 0.
Pi i

4. The piecewise-constant representation for p(¢) and 0, F' = 0 yields p; = p;(0;-1,0;), so
the trial curve is completely described by 6;, i.e. F = F(0).

OF
50 = Do Fi(0i-1,0;) + 01 Fi1(0;,0i11),

so the Hessian, V2F(0), is tridiagonal (assuming v is given) and is easily inverted.

5. The piecewise-linear representation for (() gives

6. Multi-dimensional Newton method: 60 = — (VQF)_l -VF(0) ;

global integration, much less sensitive to “Lyapunov” integration errors.



The action gradient, v, is constant along the pseudo
fieldlines; construct Quadratic Flux Minimzing (QFM)
surfaces by pseudo fieldline (local) integration.

1.

The true fieldline flow along B around ¢ toroidal periods from (6, po)

produces a mapping, ( % ) = M1 ( % ) .
Pq 0

. Periodic fieldlines are fixed points of MY, i.e. 8, = 0y + 27, p, = po.

. In integrable case: given 6y, a one-dimensional search in p is required

to find the true periodic fieldline.

In non-integrable case, only the
(i) “stable” (action-minimax), O, (which is not always stable), and the

(ii) unstable (action minimizing), X, periodic fieldlines are guaranteed to survive.

vV

. The pseudo fieldline flow along B, = B — —e, around ¢ periods from (6o, po)

V9

produces a mapping, ( gq ) = P1 ( ;)/ ), but v is not yet known.
q 0

. In general case: given 6y, a two-dimensional search in (v, p) is required

to find the periodic pseudo fieldline.



Lagrangian integration is sometimes preferable,
but not essential:
can iteratively compute radia

IH

error” field

0. Usually, there are only the “stable” periodic fieldline and the unstable periodic fieldline,

1. At every 6 = o, determine v(«) via numerical search so that B — v e,/,/g yields a periodic integral curve;

where « is a fieldline label.

L K 'm

pseudo fieldlines
2. At the true periodic fieldlines, the required additional radial field is zero: i.e. v(ag) =0 and v(ax) = 0.

3. Typically, v(a) ~ Sin(qoz)m VT/X\ T

4. The pseudo fieldlines “capture” the true fieldlines; QFM surfaces pass through the islands.




A magnetic vector potential, in a suitable gauge,
is quickly determined by radial integration.

1. Generally, gauge freedom allows A = Ay(p,0,)VO+ As(p,0,()VC.
2. Vx B = A gives

\/EBZ — aQAC — 8@‘149,
V9BY = —  0,A¢,
JIBS = 08,4.

3. Given the magnetic field, A is quickly determined by radial integration in Fourier
space:

a,oAH,m,n — +(\/§Bg)m,na
OpA¢mm = _(\/ng)m,m

and the 3¢ equation, V9BP = 0gA¢ — O¢ Ag, is satisfied if V- B = 0;
present implementation assumes coordinate axis coincides with magnetic axis,

which causes a problem for sawteeth . .

4. Hereafter, use notation A = ¢V — V.



The structure of phase space is related to the
structure of rationals and irrationals.

- r|Oo

~N o 0 AN

THE FAREY TREE;

or, according to Wikipedia,

THE STERN-BROCOT TREE. }
altemating path— 1
mediant - @ ]1 — p 0 + p ! (excluded region) e—altematmgpath
[ do G do + q1
2
— 3
1 1 1 | | 1 |
0 1 1 2 1 3 2 %)
4 3 5 2 5 3 4
. Islands, and chaos, emerge at every rational:
about each rational, n/m, introduce “excluded region” with width r/mk; if excluded regions don’t overlap, then
KAM theorem: irrational flux surface can survive if [¢ — n/m/| > r/m" for all n, m.
Call ¢ strongly irrational. Diophanti;l; condition
Greene’s residue criterion: the most robust flux surfaces have “noble” transform:
noble irrationals = limit of ultimately alternating paths = limit of Fibonacci ratios;
0112 3 5 8 13 21 34 55 _(1+\/_) 1011235 8 13 21 -1

€.g. TJ67I9I7§:§757§7ﬁ92_1:3_47"'%VEgOldenmean: ; €.g. 67T7T7§7§:§:§:ﬁ72_1)3_47"'_>7



Irrational KAM surfaces break into cantori when

perturbation exceeds critical value.
Both KAM surfaces and cantori restrict transport.

1 2 :
3 < delete middle third > 3 1
. : ' @)mplete barrier |

k=)

'

—>0 - - = - - - - = om - - = om
i L T 2% 25 < partal barrer |

— KAM surfaces are closed, toroidal surfaces
that stop radial field line transport

10° iterations —

— Cantori have “gaps” that fieldlines can pass through; I
however, cantori can severely restrict radial transport . for §
— Example: all flux surfaces destroyed by chaos, “noble” =g |-~ EN ' WS
but even after 100 000 transits around torus ~ cantori . | - e SEEE | 8
the fieldlines don’t get past cantori ! (block dots} — === w . i T

. -CSU

\!

— Regions of chaotic fields can provide some
confinement because of the cantori partial barriers. 10° iterations —




Ghost surfaces are (almost) indistinguishable from
QFM surfaces

can redefine poloidal angle to unify ghost surfaces with QFMs.

1. Ghost-surfaces are defined by
an (action gradient) flow.

2. QFM surfaces are defined by
minimizing / (action gradient)?ds.

3. Not obvious if the different
definitions give the same surfaces.

4. For model chaotic field: \

(a) ghosts = thin solid lines;
(b) QFMs = thick dashed lines;>_)
(c) agreement is excellent;
(d) difference = O(e?),

where € is perturbation. /

5. Can redefine 6 to obtain
unified theory of ghosts & QFMs;

straight pseudo fieldline angle.




Isotherms of the steady state solution to the

anisotropic diffusion coincide with ghost surfaces;
analytic, 1-D solution is possible.

1.

. Simple transport model: anisotropic diffusion,

Transport along the magnetic field is unrestricted:

e.g. parallel random walk with long steps ~ collisional mean free path.

Transport across the magnetic field is very small:

e.g. perpendicular random walk with short steps &~ Larmor radius.

KJHVﬁT + HZJ_V%_T =0 RJ_/H,” ~ 10710 grid = 212 x 212,

steady state, no source, inhomogeneous boundary conditions.

. Compare numerical solution to “irrational” ghost-surfaces |:> A

The temperature adapts to KAM surfaces, cantori,
and ghost-surfaces!, i.c. T =T(p).

From T =T(p,0,() to|T = T(p) | allows an expression

for the temperature gradient in chaotic fields:

dT 1
8.8 ?
dp  Kp2+Kk1G

where 9 = /Bi ds, and G = /Vp -Vpds.
—— N—— —

quadratic flux metric

particle “knocked”
onto nearby field line

ghost-surfacwthvnﬂ cold

[Hudson & Breslau, 2008] hot




