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The most important theoretical/numerical calculation  
in the study of magnetically confined plasmas  
is to determine the magnetic field. 

1) MHD equilibrium codes (such as HINT-2) determine the structure of 
the magnetic field, allowing for islands and chaotic fieldlines, in 
stellarators, perturbed tokamaks, . . 
 

2) It is always useful, and often essential, to know the chaotic structure 
of the fieldlines.  
 

3) The efficiency, reliability and accuracy of such codes depend on 
accurate, robust, fast numerical routines. 

1) Constructing efficient subroutines requires tedious, careful work! 



So, given the vector field, B(x),  what are the 
properties of the integral-curves ≡ fieldlines? 



The simplest diagnostic: Poincaré plot:  
from given (R,Z), follow along B a “distance” of Δφ=2π 
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The magnetic axis and X-point are fixed points of the 
Poincaré mapping; which may be found, for example, 
using fieldline tracing + Newton iterations. 



Example: locating the magnetic axis using fieldline 
tracing method + Newton iterations. 
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“Global integration” is much faster: 

the action integral is a functional of a curve in phase space. 



The tangent mapping determines the behavior of 
nearby fieldlines. 
Chaos: nearby fieldlines diverge exponentially.  



The Lyapunov exponent can distinguish chaotic 
trajectories,  
but it is computationally costly.  

black line = linear separation 



“Global integration” can robustly find the 

action minimizing curve = X-point 

These constraints must be invertible. 



From “arbitrary” initial guess, 
e.g. from close to the O-point, 
the gradient-flow method converges on X-point, 

even if the initial guess is outside the separatrix. 

“Global integration” can robustly find the 

action minimizing curve = X-point 



The magnetic axis is a “stable” fixed point (usually), 
and the X-point is “unstable”. 
Consider the eigenvalues of tangent mapping:  



The    stable/unstable direction forwards     in φ is the 
      unstable/stable      direction backwards in φ. 

separatrix 



For perturbed magnetic fields, the separatrix splits. 
A “partial” separatrix can be constructed. 

ASDEX-U 



For JT60-SA, the partial separatrix is strongly 
influenced by an “almost” double-null. 
 

JT60-SA 



particle “knocked” 

onto nearby field line 

Consider heat transport: 
rapid transport along the magnetic field, 
slow transport across the magnetic field. 



Anisotropic heat transport + unstable manifold =  ? 
What is the temperature in the “chaotic edge” ? 
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OCULUS: the eye into chaos 

1. OCULUS© : a user-friendly, theoretically-sophisticated, imaginatively-named, library of 
subroutines for analyzing the structure of non-integrable (chaotic) magnetic fields 

* freely available online at http://w3.pppl.gov/~shudson/Oculus/oculus.pdf 
* 9 subroutines are presently available  

 
2. This library is integrated into HINT-2, M3D-C1,  SPEC, and NIMROD (under construction), . . . 

 
3. Our long-term goal is for all high-performance codes to use shared, co-developed, freely-

available, numerical libraries.  
 

4. A community-based approach to large-scale computing. 
 

1. Many codes ask the same questions, i.e. need the same subroutines. 
 

Where is the last, closed, flux surface? Where is the unstable manifold? Where are the magnetic islands, and how big are they? 
Where is the magnetic axis? How “chaotic” is the magnetic field? 

 
 

http://w3.pppl.gov/~shudson/Oculus/oculus.pdf
http://w3.pppl.gov/~shudson/Oculus/oculus.pdf




So far, have used cylindrical coordinates (R,φ,Z). 
Is it better to use toroidal coordinates, (ψ,θ,φ) ? 
 

Fig. 6. Hudson & Suzuki, 
[ PoP, 21:102505, 2014 ] 
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Question: can a toy Hamiltonian be “fit” to the partial 
separatrix to provide suitable, “background” toroidal 
coordinates? 

“Toy” ASDEX-U 
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Ghost surfaces, a class of almost-invariant surface, are 
defined by an action-gradient flow between the 
action minimax and minimizing fieldline. 



The construction of extremizing curves of the action 
generalized extremizing surfaces of the quadratic-flux 



Alternative Lagrangian integration construction: 
QFM surfaces are families of extremal curves of the 
constrained-area action integral. 



The action gradient, ,  is constant along the pseudo 
fieldlines; construct Quadratic Flux Minimzing (QFM) 
surfaces by pseudo fieldline (local) integration. 



ρ  

poloidal angle,  

0. Usually, there are only the “stable” periodic fieldline and the unstable periodic fieldline, 

Lagrangian integration is sometimes preferable, 
but not essential: 
can iteratively compute radial “error” field  

pseudo fieldlines 

true fieldlines 



A magnetic vector potential, in a suitable gauge,  
is quickly determined by radial integration. 
 



The structure of phase space is related to the 
structure of rationals and irrationals. 
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THE FAREY TREE; 
or, according to Wikipedia, 

THE STERN–BROCOT TREE. 
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510  iterations

“noble” 

cantori 
(black dots) 

KAM surface 

 

Cantor set 

 

complete barrier 

partial barrier 

 KAM surfaces are closed, toroidal surfaces  

     that stop radial field line transport 

       

 Cantori have “gaps” that fieldlines can pass through; 

     however, cantori can severely restrict radial transport 

 

 Example: all flux surfaces destroyed by chaos, 

     but even after 100 000 transits around torus 

     the fieldlines don’t get past cantori ! 

 

 Regions of chaotic fields can provide some  

     confinement because of the cantori partial barriers. 
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Irrational KAM surfaces break into cantori when 
perturbation exceeds critical value. 
Both KAM surfaces and cantori restrict transport. 



Ghost surfaces are (almost) indistinguishable from 
QFM surfaces 
can redefine poloidal angle to unify ghost surfaces with QFMs. 



hot 

cold 

particle “knocked” 

onto nearby field line 

isotherm ghost-surface ghost-surface 

Isotherms of the steady state solution to the 
anisotropic diffusion coincide with ghost surfaces; 
analytic, 1-D solution is possible.  

[Hudson & Breslau, 2008] 


