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Motivation
Differences were found between VMEC and linear code responses at rational 
surfaces (Turnbull et al. 2013)

Turnbull A D et al. 2013 Comparisons of linear and nonlinear plasma response models for non-axisymmetric perturbations Phys. Plasmas 20 056114
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Motivation
DIII-D 3D magnetic diagnostics did not discriminate plasma models (King, 2015)

Recent theoretical work provides a framework with which we 
may better understand and validate ideal MHD models at rational 
surfaces (Loizu et al. 2015)

King J D et al. 2015 Experimental tests of linear and nonlinear three-dimensional equilibrium models in DIII-D Phys. Plasmas 22 072501



Outline of talk

• A new solution to Newcomb’s equation 

• The VMEC solution to a screw-pinch 

• Finite beta effects 

• Current sheets in real equilibria 

• Concluding remarks
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Resulting in a discontinuous plasma displacement, resulting in overlap of 
surfaces
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A resolution to this inconsistency has been 
formulated

• Ideal MHD equilibria with resonant surfaces are not analytic functions of the 
3D boundary. 

• An equilibrium model with fractal radial grid is unattractive. 

• It has been recognised that infinite shear prevents surfaces from overlapping 
at rational surfaces*. 

• The resolution is to include a discontinuity in the rotational transform at the 
resonant surface (no longer rational).

* Loizu J et al. 2015 Magnetic islands and singular currents at rational surfaces in three-dimensional magnetohydrodynamic equilibria Phys. Plasmas 22 022501



The perturbed screw-pinch 

ξ ~ xα α = −1,0

ξ ' = 2 ∂ιs
∂r

ξ
Δι

Loizu J et al. 2015 Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets Phys. Plasmas 22 090704

Reconsider the screw pinch, including a 
discontinuity in the rotational transform

Near the resonant surface we define

ξ

ρ
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Expanding about the surface we find

The maximum gradient of the displacement may then be written
ʹξ <1

Δι > Διmin = 2ξs ʹιs



The finite beta behaviour has been explored 

ξ ∝ xα α = −
1
2
±

1
4
−DS

−1<α1 < −
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2
<α2 < 0

Loizu J et al. 2015 Pressure driven amplification and penetration of resonant magnetic perturbations Phys. Plasmas (submitted)

Inclusion of pressure in the screw pinch problem 
modifies Newcomb’s equation so thatξ
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At finite beta this Suydam criterion returns

ξ ~ λ1x
α1 +λ2x

α2



Can these results be used to validate VMEC?

• VMEC assumes nested flux surface by 
construction. 

• Can approximate a cylindrical model. 

• Continuous iota profiles.

!
B =∇ζ ×∇χ +∇Φ×∇θ *

R
a
→∞ N fp →∞



The VMEC screw-pinch

Aspect Ratio 100

Field Periodicity 100



Resonant response

The displacement shows a response across the 
rational surface which scales with radial resolution.



Self-convergence consistent with finite difference
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Response shows some shear dependence

Shear and radial resolution play a role.  However the effective discontinuity is greater than the 
minimum necessary for nested flux surfaces and that which can be attributed to the radial finite 

difference.



Qualitative agreement with theory

Comparison with the linear model suggests that despite the absence of a discontinuous iota 
profile, VMEC is obtaining qualitatively similar solutions.



VMEC exhibits the finite beta response as well

In this model pressure gradients can amplify resonant perturbations.
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Effects present in real tokamak equilibria

The structure of the current density in the more realistic geometry of a ‘perturbed’ tokamak 
shows that this type of response is not limited to the screw-pinch case.

Lazerson S 2014 The ITER 3D magnetic diagnostic response to applied n= 3 and n= 4 resonant magnetic perturbations PPCF 56 095006



Conclusions
• The newly developed solutions to Newcomb’s problem 

provide a means to validate the VMEC plasma response 
across rational surfaces. 

• This new theoretical formulation suggests that VMEC is 
lacking transform discontinuities in it’s formulation. 

• Despite this shortcoming the VMEC code qualitatively 
reproduces the non-local response across a resonant 
surface. 

• This response is also present in tokamak equilibria with 
applied RMP fields.


