Ideal MHD in the nested flux surface limit

Samuel Lazerson¹

J. Loizu², S. Hudson¹, S. Hirshman³

- [1] Princeton Plasma Physics Laboratory
- [2] Max-Planck-Institut für Plasmaphysik

[3] Oak Ridge National Laboratory

Motivation

Differences were found between VMEC and linear code responses at rational surfaces (Turnbull et al. 2013)

pp

PPP

Motivation

DIII-D 3D magnetic diagnostics did not discriminate plasma models (King, 2015)

Motivation

DIII-D 3D magnetic diagnostics did not discriminate plasma models (King, 2015)

Outline of talk

- A new solution to Newcomb's equation
- The VMEC solution to a screw-pinch
- Finite beta effects
- Current sheets in real equilibria
- Concluding remarks

Singularities arrise from from charge conservation

$$\nabla \cdot \vec{j} = 0$$

Singularities arrise from from charge conservation

$$\nabla \cdot \vec{j} = 0$$

This gives rise to the magnetic differential equation

$$\vec{B} \cdot \nabla u = -\nabla \cdot \vec{j}_{\perp} \qquad \qquad \vec{j} = u\vec{B} + \vec{j}_{\perp}$$

Singularities arrise from from charge conservation

$$\nabla \cdot \vec{j} = 0$$

This gives rise to the magnetic differential equation

$$\vec{B} \cdot \nabla u = -\nabla \cdot \vec{j}_{\perp} \qquad \qquad \vec{j} = u\vec{B} + \vec{j}_{\perp}$$

Constructing straight field line co-ordinates on a flux surface we find

$$j\vec{B}\cdot\nabla = \mathbf{t}\cdot\partial_{\theta} - \partial_{\xi}$$

Singularities arrise from from charge conservation

$$\nabla \cdot \vec{j} = 0$$

This gives rise to the magnetic differential equation

$$\vec{B} \cdot \nabla u = -\nabla \cdot \vec{j}_{\perp} \qquad \qquad \vec{j} = u\vec{B} + \vec{j}_{\perp}$$

Constructing straight field line co-ordinates on a flux surface we find

$$j\vec{B}\cdot\nabla = \mathbf{+}\partial_{\theta} - \partial_{\zeta}$$

Expanding the parallel current in Fourier modes we then find

$$u_{mn} = \frac{h_{mn}(x)}{x} + \Delta_{mn}\delta(x) \qquad \qquad x = \pm m - n$$
$$h_{mn}(x) \equiv i\left(j\nabla \cdot \vec{j}_{\perp}\right)_{mn}$$
$$\vec{j} \times \vec{B} = \nabla p \Longrightarrow \vec{j}_{\perp} = \frac{\vec{B} \times \nabla p}{B^2}$$

DDD

Singularities arrise from from charge conservation

$$\nabla \cdot \vec{j} = 0$$

This gives rise to the magnetic differential equation

$$\vec{B} \cdot \nabla u = -\nabla \cdot \vec{j}_{\perp} \qquad \qquad \vec{j} = u\vec{B} + \vec{j}_{\perp}$$

Constructing straight field line co-ordinates on a flux surface we find

$$j\vec{B}\cdot\nabla = \mathbf{+}\partial_{\theta} - \partial_{\zeta}$$

Expanding the parallel current in Fourier modes we then find

$$u_{mn} = \frac{h_{mn}(x)}{x} + \Delta_{mn}\delta(x) \qquad \qquad x = +m - n$$

0 for p=0
$$h_{mn}(x) = i\left(j\nabla \cdot \vec{j}_{\perp}\right)_{mn}$$

$$\vec{j} \times \vec{B} = \nabla p \Rightarrow \vec{j}_{\perp} = \frac{\vec{B} \times \nabla p}{B^2}$$

DDD

Assume a cylindrical equilibrium with a linear boundary displacement

$$\vec{\xi} = \xi^r e_r + \xi^\theta e_\theta + \xi^Z e_Z$$

Assume a cylindrical equilibrium with a linear boundary displacement

$$\vec{\xi} = \xi^r e_r + \xi^\theta e_\theta + \xi^Z e_Z$$

which satisfies the linearised MHD force balance equation

$$L_0[\xi] = \delta \vec{j}[\xi] \times \vec{B} + \vec{j} \times \delta \vec{B}[\xi] = 0$$

Assume a cylindrical equilibrium with a linear boundary displacement

$$\vec{\xi} = \xi^r e_r + \xi^\theta e_\theta + \xi^Z e_Z$$

which satisfies the linearised MHD force balance equation

$$L_0[\xi] = \delta \vec{j}[\xi] \times \vec{B} + \vec{j} \times \delta \vec{B}[\xi] = 0$$

This reduces to Newcomb's equation

$$\frac{d}{dr}\left(f\frac{d\xi}{dr}\right) - g\xi = 0$$

$$f = B_Z^2 \left(\iota - \iota_s\right)^2 \frac{r^3}{R^2 + r^2 \iota^2}$$

$$g = B_Z^2 \left[\left(\iota - \iota_s\right) \left(k^2 r^2 + m^2 - 1\right) \overline{k} + \left(\iota - \iota_s\right) 2 \overline{k}^2 r\right]$$

$$k = -\frac{n}{R} \qquad \iota_s = \frac{n}{m} \qquad \overline{k} = \frac{r}{R^2 + r^2 \iota_s^2}$$

DDD

Newcomb's equation is singular where

$$\iota(r_s) = n / m$$

Resulting in a discontinuous plasma displacement, resulting in overlap of surfaces

 $|d\xi/dr| > 1$

$$\frac{d}{dr}\left(f\frac{d\xi}{dr}\right) - g\xi = 0$$

$$f = B_Z^2 \left(\iota - \iota_s\right)^2 \frac{r^3}{R^2 + r^2 \iota^2}$$

$$g = B_Z^2 \left[\left(\iota - \iota_s\right) \left(k^2 r^2 + m^2 - 1\right) \overline{k} + \left(\iota - \iota_s\right) 2 \overline{k}^2 r\right]$$

$$k = -\frac{n}{R} \qquad \iota_s = \frac{n}{m} \qquad \overline{k} = \frac{r}{R^2 + r^2 \iota_s^2}$$

PPPL

A resolution to this inconsistency has been formulated

- Ideal MHD equilibria with resonant surfaces are not analytic functions of the 3D boundary.
- An equilibrium model with fractal radial grid is unattractive.
- It has been recognised that infinite shear prevents surfaces from overlapping at rational surfaces*.
- The resolution is to include a discontinuity in the rotational transform at the resonant surface (no longer rational).

The perturbed screw-pinch

Reconsider the screw pinch, including a discontinuity in the rotational transform

$$\Delta \iota \equiv \iota(r_s^+) - \iota(r_s^-) > 0$$

Near the resonant surface we define

 $x = \left| \frac{\iota - \iota_s}{\partial \iota \, / \, \partial r} \right|$

Expanding about the surface we find

PPP

The maximum gradient of the displacement may then be written

$$|\xi'| = 2 \frac{\partial \iota_s}{\partial r} \frac{\xi}{\Delta \iota} \qquad \frac{|\xi'| < 1}{\Delta \iota} \qquad \Delta \iota > \Delta \iota_{min} = 2\xi_s \iota'_s$$

The finite beta behaviour has been explored

At finite beta this Suydam criterion returns

$$\xi \sim \lambda_1 x^{\alpha_1} + \lambda_2 x^{\alpha_2} \qquad -1 < \alpha_1 < -\frac{1}{2} < \alpha_2 < 0$$

Loizu J et al. 2015 Pressure driven amplification and penetration of resonant magnetic perturbations Phys. Plasmas (submitted)

• VMEC assumes nested flux surface by construction.

$$\vec{B} = \nabla \zeta \times \nabla \chi + \nabla \Phi \times \nabla \theta^*$$

• Can approximate a cylindrical model.

$$\frac{R}{a} \to \infty \qquad \qquad N_{fp} \to \infty$$

• Continuous iota profiles.

The VMEC screw-pinch

$R = R_{00} + a\cos\theta + \frac{\delta\rho_{n_1,m_1}}{2}\cos\left[(m_1 + 1)\theta - n_1\zeta\right] + \frac{\delta\rho_{n_1,m_1}}{2}\cos\left[(m_1 - 1)\theta - n_1\zeta\right]$	Aspect Ratio	100
$Z = a \sin heta + rac{\delta ho_{n_1,m_1}}{2} \sin \left[(m_1 + 1) heta - n_1 \zeta ight] - rac{\delta ho_{n_1,m_1}}{2} \sin \left[(m_1 - 1) heta - n_1 \zeta ight]$	Field Periodicity	100

Resonant response

The displacement shows a response across the rational surface which scales with radial resolution.

Self-convergence consistent with finite difference

PPPL U.S. DEPARTMENT OF

IPP

Response shows some shear dependence

Shear and radial resolution play a role. However the effective discontinuity is greater than the minimum necessary for nested flux surfaces and that which can be attributed to the radial finite difference.

DD

Qualitative agreement with theory

Comparison with the linear model suggests that despite the absence of a discontinuous iota profile,VMEC is obtaining qualitatively similar solutions.

DDD

VMEC exhibits the finite beta response as well

In this model pressure gradients can amplify resonant perturbations.

IPP

PPP

VMEC Pressure Gradient Scan

Effects present in real tokamak equilibria

The structure of the current density in the more realistic geometry of a 'perturbed' tokamak shows that this type of response is not limited to the screw-pinch case.

DD

Lazerson S 2014 The ITER 3D magnetic diagnostic response to applied n= 3 and n= 4 resonant magnetic perturbations PPCF 56 095006

Conclusions

- The newly developed solutions to Newcomb's problem provide a means to validate the VMEC plasma response across rational surfaces.
- This new theoretical formulation suggests that VMEC is lacking transform discontinuities in it's formulation.
- Despite this shortcoming the VMEC code qualitatively reproduces the non-local response across a resonant surface.
- This response is also present in tokamak equilibria with applied RMP fields.