From Chirikov's island overlap criterion, to cantori,
and ghost-surfaces.
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Abstract

A brief review of the KAM theorem, Chirikov's island overlap criterion and Greene's
residue criterion will show how these widely-quoted ideas can be simply understood
by considering how far a given irrational number is from nearby low-order rationals.

Flux surfaces are broken by islands and chaos, but in a very meaningful sense they do
not completely disappear, at least not immediately. Graphical evidence showing the
importance of cantori in restricting both fieldline transport and heat transport in
partially chaotic magnetic fields will be given.

Two classes of almost-invariant surfaces, namely quadratic-flux minimizing surfaces and
ghost surfaces, which serve as “replacement” flux surfaces after the destruction of
invariant surfaces, can be derived quite simply from classical action principles and are
shown to be equivalent.



In the beginning, there was Hamiltonian mechanics

Hamilton, Lagrange, et al. identified integrals of motion,
Boltzmann’s postulated the ergodic hypothesis,
Poincaré described the “chaotic tangle”.

Quotations from [“Regular and Chaotic Dynamics”, by Lichtenberg & Lieberman]

1) “These deep contradictions between the existence of integrability and the
existence of ergodicity were symptomatic of a fundamental unsolved problem of
classical mechanics.”

2) “Poincaré contributed to the understanding of these dilemmas by demonstrating the extremely intricate nature of the
motion in the vicinity of the unstable fixed points, a first hint that regular applied forces may generate stochastic
motion in nonlinear oscillator systems.”

3) “Birkhoff showed that both stable and unstable fixed points must exist whenever there is a rational frequency ratio
(resonance) between two degrees of freedom.”

4) “.the question of the ergodic hypothesis, whether a trajectory explores the entire region of
the phase space that is energetically available to it, or whether it is constrained by the
existence of constants of the motion, was not definitively answered until quite recently. The
KAM theorem, originally postulated by Kolomogorov (1954), and proved under different
restrictions by Arnold (1963) and Moser (1962) . .



Classical Mechanics 101:

The action integral is a functional of a curve in phase space.
1. The action, S, is the line integral along an arbitrary “trial” curve {C : ¢ = q(¢)}, of the Lagrangian,

L=T(¢q)— Ulg,t), S= /E(q,d, t)dt
N N — C
kinetic  potential

2. For magnetic fields, B, the action is the line integral, of the vector potential, B =V x A,
S = / A -dl, along {C:0=06(),p=pd)}.
C

3. Physical trajectories (magnetic fieldlines) extremize the action:

68 = / d¢ (59— 5,0—),Where 95 = /gB” — p\/gB¢ |and 88 _9\/_BC VoB? |

extremal curves satisfy p = B?/B¢, and § = BY /BS.

o
4. Action-extremizing, periodic curves may be minimizing or minimax. W
()

5. [Ghost surfaces are defined by an action-gradient flow between the minimax and minimizing periodic orbit.]



1954 : Kolmogorov, Dokl. Akad. Nauk SSSR 98, 469 ,1954
1963 : Arnold, Russ. Math. Surveys 18, 9,1963

1962 : Moser, Nachr. Akad. Wiss. Goett. Il, Math.-Phys. KI. 1, 1,1962
1. A dynamical system is integrable if there exists action-angle (v, 0) s.t. H = Hy(1)).

2. Arbitrary perturbation H = Hy(v)) + Z Hp, n(¥) expli(mb — n()], where ¢ =t is “time”.

3. Generating function to new action-action coordinates, (1, 8), is

S(,8) = §- G415 —mn enli(mf — nc)]. (1)

(m6 —n)
i. small denominators: rationals are dense; 3(m,n) s.t. m 6 — n is arbitrarily small.

4. KAM: adjust 1, iteratively, to ensure that ¢ = 6 is sufficiently irrational,

n r
Diophantine condition }é — —‘ > — | for all n & m, where r > 0 and k > 1.
m m

5. If ¢ is sufficiently irrational then for sufficiently small H,, (1), Eqn(1l) converges.

i. action-angle coordinates can be constructed locally if « = 6 is irrational.

“one of the most important concepts is labelling orbits by their frequency” [ J. D. Meiss, Reviews of Modern Physics, 64(3):795 (1992)]



The structure of phase space is related to the
structure of rationals and irrationals.
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or, according to Wikipedia,
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altemating path— 1
mediant - @ ]1 — p 0 + p ! (excluded region) e—altematmgpath
[ do G do + q1
2
— 3
1 1 1 | | 1 |
0 1 1 2 1 3 2 %)
4 3 5 2 5 3 4
. Islands, and chaos, emerge at every rational:
about each rational, n/m, introduce “excluded region” with width r/mk; if excluded regions don’t overlap, then
KAM theorem: irrational flux surface can survive if [¢ — n/m/| > r/m" for all n, m.
Call ¢ strongly irrational. Diophanti;l; condition
Greene’s residue criterion: the most robust flux surfaces have “noble” transform:
noble irrationals = limit of ultimately alternating paths = limit of Fibonacci ratios;
0112 3 5 8 13 21 34 55 _(1+\/_) 1011235 8 13 21 -1
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The standard map is a simple and widely-used model
of chaotic dynamics .

1. Standard map: (sometimes also called Chirikov-Taylor map);

rn + ksin@,, where k is perturbation
Gn + T'n+41

Tn+1

gn—i—l

i
ii.

1il.

For k = 0, motion is integrable: r = const., 8 = g + n r;
For k # 0, islands and “chaotic” =

For k > k., no invariant surfaces (except inside islands);

irregular trajectories emerge;

iv. Definition : (m,n)-periodic orbit: r,, =19 6y, = 6o + n.
: . . _( or 1, ksiné,, or
2. Linearized motion: dz,41 = ( 50 )n+1 = ( 1. 14 ksin, ) ( 50 )n

i.
3. Linearized motion of (m,n)-periodic orbits, dz,, = M,,

i

ii.

tangent map, M,

mapping is area preserving, therefore det|M,,| = 1.

.. MlM(), 5250

“stability” of periodic orbits determined by eigenvalues, \;, of M"™ = M,

X: hyperbolic: A2 = 1/A1; A; real; |A1| > 1; unstable;
O:

As k increases, eventually all periodic orbits become unst

elliptic: \; complex congugates; |\;| = 1; stable;

4. For given k, which flux surfaces exist? What is k.7

able.

.. My My;




The standard map is very simple, but the trajectories
are very complicated.

There are islands around islands around islands . ..

Birkhoff (1935) “It is clear that not only do
general elliptic periodic solutions possess
neighboring elliptic and hyperbolic periodic
solutions, but also, beginning again with the
neighboring elliptic solutions, who are, as it were,
satellites of these solutions, one can obtain other
elliptic and hyperbolic solutions which are
secondary satellites.”




1979 : Chirikov’s Island-Overlap Criterion

PHYSICS REPORTS 52, 5(1979)263-37

1. Can estimate resonance = “island” width

i. single resonance Hamiltonian H = %1/)2 + ecos(mb) = E = const.

ii. ¢ = ++/2[E — ecos(mb)] S 7
iii. for separatrix, choose F = ¢; island width w = 44/€ A ANV A A Y
= AT T e T

w w
2. Introduce island overlap criterion: if 71 + 72 > At |, then chaos. =} 5

?

i. for standard map, predicted k. = 2.5. s

3. However, numerical experiments show k. ~ 0.989

i. plot N = # iterations to leave given domain against k; wi

ii. two free parameters, k. and 3;

4. “The overlap is not only provided by integer resonances,
but also by higher harmonic resonances.”

i. If additional resonances are considered, the predicted k. chang

e.g. k1,1 =2.5, k12 =146, k1,3 =0.90, ko 3 =1.35, . .

AT O o<



1979 : Greene’s Residue Criterion
J. Math. Phys. 20(6), 1979, 1183 (1979)

1. The existence of an irrational flux surface is related to the stability of nearby periodic orbits!

i. periodic orbits are convenient because they have finite length

and ii. because they are guaranteed to exist [Poincaré-Birkhoff theorem)]

2. Construct a sequence of rationals that converge to the irrational, lim — =¢
12— 00 m’l:
1235 8 13 21 34 55 89 144 233 377 _>1+\/5
1'1°273"57 87137217347 55" 89 " 1447 233 2

= golden mean

3. Introduce the residue, R,, /,,, defined on the periodic orbits, which measures stability:

1
Rn/m = 1 [2 — AL — /\2] , where \; are eigenvalues of tangent map, M™.

05— T T T T T T T T T Super-critical
i. if Ry, /m, — 0, surface exists R e + ‘

i if Ry, — %, surface is critical e
iii. if R,,, /p,, — 00, surface destroyed D'+°5-- P ‘

.
sub-critical
4. k. = 0.971635406... o | e T

2 3 5 8 13 21 p_'S/d-q 55 89 144 233 377 610 _,.+"‘ ‘-.;Hl\




Standard Map critical function is similar to the Bruno
function

1. Define k.(¢) as the largest value of k for which an + invariant curve exists; kc(b) 25 T T T

i. the critical function peaks on strongly irrationals: 20} w i oA .
kc(¢) > 0 if + is irrational; Rt g
. : : ; DI SR A ]
ii. rational surfaces do not exist: 7 K P gl ;%’g .
1 x . LA A
ke(¢) =0if ¢ =n/m. . Pou o 13{‘%.‘
1of R R 3
iii. k. is everywhere discontinuous. : A
2. The critical function has a form very similar to the Bruno function, G Sl 7 I 5= - )
2 9 7 5 13 8 11 3

- R

B(w) = —logw +wB(w™), B(w)=B(w+1)=B(~w).

i. B(w) is more simply calculated as a function of the continued fraction representation.

3. Marmi & Stark [Nonlinearity, 1992]| gave evidence that
Cy = log(ke(w) ) + BB(w)

1S continuous.

i. i.e., that the critical function and the Bruno function
have the same fractal structure.




Irrational KAM surfaces break into cantori when

perturbation exceeds critical value.
Both KAM surfaces and cantori restrict transport.

1 2 :
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— KAM surfaces are closed, toroidal surfaces
that stop radial field line transport

10° iterations —

— Cantori have “gaps” that fieldlines can pass through; I
however, cantori can severely restrict radial transport . for §
— Example: all flux surfaces destroyed by chaos, “noble” =g |-~ EN ' WS
but even after 100 000 transits around torus ~ cantori . | - e SEEE | 8
the fieldlines don’t get past cantori ! (block dots} — === w . i T

. -CSU

\!

— Regions of chaotic fields can provide some
confinement because of the cantori partial barriers. 10° iterations —




Simple physical picture of cantori
[Percival, 1979]

1. Consider masses, m, linked by springs in a periodic potential.

2. For m = 0, potential is irrelevant: minimum energy state has masses equally spaced.

o F o R F o Ll o R lls R e Rl s B d o R o B o I

VAVAVA

3. For large m, springs are irrelvant: all the masses lie at the potential minimum,
and there are “gaps”.

Vc

ANVANYANVANVA
JVV\]VVVV\

[Schellnhuber, Urbschat & Block, Physical Review A, 33(4):2856 (1986) ]




The construction of extremizing curves of the action
generalized extremizing surfaces of the quadratic-flux

1.

08

08 08 08 :
= — +8p—— |, where | — = \/gB” — p\/gB* —— =6,/¢gB* — \/gB? |
45 /CdC (59 90 op ap) , where | = V9 I and o 0vg NG

oS

. Extremal curves satisfy g—g =0, i.e. p= B”/BS, and 9, = 0, i.e. § = B?/B¢.

P

Introduce toroidal surface, p = P(#,¢), and family of angle curves, 0,(¢) = o+ pC/q + 0(C), where
a is a fieldline label; p and ¢ are integers that determine periodicity; and 67(0) = é(QTrq) =0.

On each curve, p,(¢) = P(0,(¢),¢) and 0,(¢), can enforce g—s = 0; generally v = g—g = (.
0

The pseudo surface dynamics is defined by § = B? /BS and p = Oy P 6 + OcP.

v

. Corresponding pseudo field B, = p B¢ e, + 0 BC eg + BCeC; simplifies to B, = B — — e,,.

V9

1 35S\ *
Introduce the quadratic-flux functional: | 5 = 3 f f dOd( (%)

. Allowing for d P, the first variation is dps = //deC 0P \/g (B989 + Biag) V.

Euler-Lagrange for QFMs



The action gradient, v, is constant along the pseudo
fieldlines; construct Quadratic Flux Minimzing (QFM)
surfaces by pseudo fieldline (local) integration.

1.

The true fieldline flow along B around ¢ toroidal periods from (6, po)

produces a mapping, ( % ) = M1 ( % ) .
Pq 0

. Periodic fieldlines are fixed points of MY, i.e. 8, = 0y + 27, p, = po.

. In integrable case: given 6y, a one-dimensional search in p is required

to find the true periodic fieldline.

In non-integrable case, only the
(i) “stable” (action-minimax), O, (which is not always stable), and the

(ii) unstable (action minimizing), X, periodic fieldlines are guaranteed to survive.

vV

. The pseudo fieldline flow along B, = B — —e, around ¢ periods from (6o, po)

V9

produces a mapping, ( gq ) = P1 ( ;)/ ), but v is not yet known.
q 0

. In general case: given 6y, a two-dimensional search in (v, p) is required

to find the periodic pseudo fieldline.



II(

At each poloidal angle, compute radial “error” field
that must be subtracted from B to create a periodic curve,

and so create a rational, pseudo flux surface.

0. Usually, there are only the “stable” periodic fieldline and the unstable periodic fieldline,

1. At every 6 = o, determine v(«) via numerical search so that B — v e,/,/g yields a periodic integral curve;

where « is a fieldline label.

/
T TS .--..--""-l

pseudo fieldlines
2. At the true periodic fieldlines, the required additional radial field is zero: i.e. v(ag) =0 and v(ax) = 0.

3. Typically, v(a) ~ Sin(qoz)m VT/X\ T

4. The pseudo fieldlines “capture” the true fieldlines; QFM surfaces pass through the islands.




Alternative Lagrangian integration construction:
QFM surfaces are families of extremal curves of the
constrained-area action integral.

1. Introduce F'(p,0) = f A-dl—v (f OV - dl — a,) , where p = {p;}, 6 = {6;};
C C

2mq
where v is a Lagrange multiplier, and a is the required “area”, / 0(¢) dc¢.
0

2. An identity of vector calculus gives §F" = ] dl x (Vx A —vV0O x V() -dl,

C
extremizing curves are tangential to B — vV x V(=B — Lep =B,.
V9
: : .. .. OF OF
3. Constrained-area action-extremizing curves satisfy 99 — 0 and 98, — 0.
Pi i

4. The piecewise-constant representation for p(¢) and 0, F' = 0 yields p; = p;(0;-1,0;), so
the trial curve is completely described by 6;, i.e. F = F(0).

OF
50 = Do Fi(0i-1,0;) + 01 Fi1(0;,0i11),

so the Hessian, V2F(0), is tridiagonal (assuming v is given) and is easily inverted.

5. The piecewise-linear representation for (() gives

6. Multi-dimensional Newton method: 60 = — (VQF)_l -VF(0) ;

global integration, much less sensitive to “Lyapunov” integration errors.



Ghost surfaces, another class of almost-invariant
surface, are defined by an action-gradient flow
between the action minimax and minimizing fieldline.

oS
1. Action, S|C] = f A - dl, and action gradient, 20 = /9B’ — pBS.
C
aS A C 9 . . b 9 . ) .
2. Enforce 5, = 0B°—/gB’ =0, i.e. invert § = BY/B°® to obtain p = p(0, 0, ¢); so that trial curve
P

is completely described by 6((), and the action reduces from S = S|p((),0(()| to S = 5[6(C
pletely y 0(C) p(€), 0(¢)] [6(C)]

90(¢;T) _  05[0] . N .
= ————— |, where 7 is an arbitrary integration parameter.

or 00

3. Define action-gradient flow:

4. Ghost-surfaces are constructed as follows:

e Begin at action-minimax (“O”, “not-always-stable”) periodic fieldline, which is a saddle;
e initialize integration in decreasing direction (given by negative eigenvalue/vector of Hessian);

e the entire curve “flows” down the action gradient, 0,0 = —9yS;

e action is decreasing, 9,5 < 0; ,//[/_\
e finish at action-minimizing (“X”, unstable) periodic fieldline.
ghost surface described by x((, 7), where 7 is a fieldline label. M




Ghost surfaces are (almost) indistinguishable from
QFM surfaces

can redefine poloidal angle to unify ghost surfaces with QFMs.

1. Ghost-surfaces are defined by
an (action gradient) flow.

2. QFM surfaces are defined by
minimizing / (action gradient)?ds.

3. Not obvious if the different
definitions give the same surfaces.

4. For model chaotic field: \

(a) ghosts = thin solid lines;
(b) QFMs = thick dashed lines;>_)
(c) agreement is excellent;
(d) difference = O(e?),

where € is perturbation. /

5. Can redefine 6 to obtain
unified theory of ghosts & QFMs;

straight pseudo fieldline angle.




Isotherms of the steady state solution to the

anisotropic diffusion coincide with ghost surfaces;
analytic, 1-D solution is possible.

1.

. Simple transport model: anisotropic diffusion,

Transport along the magnetic field is unrestricted:

e.g. parallel random walk with long steps ~ collisional mean free path.

Transport across the magnetic field is very small:

e.g. perpendicular random walk with short steps &~ Larmor radius.

KJHVﬁT + HZJ_V%_T =0 RJ_/H,” ~ 10710 grid = 212 x 212,

steady state, no source, inhomogeneous boundary conditions.

. Compare numerical solution to “irrational” ghost-surfaces |:> A

The temperature adapts to KAM surfaces, cantori,
and ghost-surfaces!, i.c. T =T(p).

From T =T(p,0,() to|T = T(p) | allows an expression

for the temperature gradient in chaotic fields:

dT 1
8.8 ?
dp  Kp2+Kk1G

where 9 = /Bi ds, and G = /Vp -Vpds.
—— N—— —

quadratic flux metric

particle “knocked”
onto nearby field line

ghost-surfacwthvnﬂ cold

[Hudson & Breslau, 2008] hot




Summary: Timeline of topics addressed in talk

(not a comprehensive history of Hamiltonian chaos!)

. Poincaré

e 1954 Kolmogorov
* 1962 Moser
e 1963 Arnold

e 1979 Chirikov
e 1979 Greene

e 1979 Percival
e 1982 Mather
e 1983 Aubry

e 1991 Angenent & Golé
e 1991 Meiss & Dewar

e 2008 Hudson & Breslau
e 2009 Hudson & Dewar

and texts:
1983 Lichtenberg & Lieberman
* 1992 Meiss

unstable manifold (i.e. chaos)

KAM theorem

island overlap criterion
residue criterion [see also 1991 MacKay]

can(tor + tor)us = cantorus
Aubry-Mather theorem (showing existence of cantori)

ghost-circles

guadratic-flux minimizing curves

isotherms = ghost-surfaces

ghost-surfaces = quadratic-flux minimizing surfaces

[Regular and Stochastic Motion]
[Reviews of Modern Physics]



