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A comparison of linear and nonlinear solutions of ideal MHD equilibria in perturbed cylindrical geometry

S.R.Hudson, J. Loizu & S. Lazerson,
Princeton Plasma Physics Laboratory, Max Planck Institute for Plasma Physics;

METHOD : Ideal MHD equilibria in arbitrary geometry can be computed using the Stepped Pressure Equilibrium Code (SPEC) in the
PROBLEM : Ideal equilibria with nested flux surfaces and
Ideal equilibria with nested flux surfaces and

— Linear perturbation theory breaks down !
— The ideal MHD equilibrium model with continuous rotational-transform does not provide self consistent equilibrium solutions in 3D !
SOLUTION: Ideal equilibria with nested flux surfaces and discontinuous rotational-transform are
— ldeal MHD equilibria with smooth pressure profiles in 3D only generally exist (i.e. arbitrary boundary) if the transform is discontinuous.
— Resonant components of perturbation fields are not completely shielded at the rational surface.

MHD Energy Functionals

1 Stepped Pressure equilibrium Code (SPEC)

Minimize energy subject to flux, helicity & topological constraints Construets extrema of MRxMHD energy functional
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1.1 Arbitrary geometry
® Cartesian, cylindrical or toroidal geometry,

« Fixed-boundary; free-boundary almost ¢

o Stellarator sym . or non-stellarator &

1.2 Input profiles

v, = toroidal flux inside i-th interface

* p; = pressure in en ced volume

® &, +f = rotational-transform on cach side of each interface

+ for contimous transform chouse & = f

« can also wse parallel enrrent profile, ji, or helieity profile, K, to define equilibrinm
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1.3 Algorithm
 Use Newton methed to set foree-balance vector to zero: A tf'_ (;}m)
1. degrees-of-frecdom = Fourier harmonics of interfaces = x = {F &
2. in eaeh volum B =V x (AT + N )
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(i) discontinuous transform at idesl interfaces with rational transform.
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Hitherto, only SPEC allows discontinnous pressure and/or discontinuous transform.

1.5 Fundamental Theorem of 3D equilibria
® Well, net really a theorem; but, flux surfaces must not overlap!

o 1 the ideal interfaces overlap, SPEC will crash!
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this poster is available at http://w3.pppl.gov/~shudson/conferences.html
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continuous rotational-transform (with continuous pressure) have unphysical currents near rational surfaces.
continuous rotational-transform (with or without pressure) are not analytic functions of the boundary.

analytic functions of the boundary.
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“To cmpare directly with linearly perturbed equilibiium codes, SPEC has been linearized. 1,1
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SPEC, linearly perturbed

Linear displacement
Be

1 with e.g. an axisymmetric equilibri

4. eylindrieal geometry).

I the interior interface:
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it total-pressure “imbalanee’ vector, defined at interfaces:
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The linear correetion to the internal geometry for a change in the boundary is
Frosv(x -+ 0x] = F(x) + (VaF] - 6 + (VpF) - db = 0,

solution 8x = —{(VyF) ! - (VyF) - ob.

Verification with semi-analytic solution

Linearized:

Excellent o
As Ae 0, linear solution —» discontimons,

Sine qua non condition
Latin

Sine qua nom, or condicio sine qua

nom,

sbu

Plural: condiciones si

Definition: an indispensable and essentin] action, condition o ingredient

Tr

lation: “without which it could not be"

First known use, 1602, First known use in plasms physics, 2015

Fundamental assumption: fAux surfaces cannot overlap
The fotal displacement must satisfy the

sine qua won condition: €' continuous, €7 < 1

The rotational transform must be discontinuous
Technically, there are no rational surfaces

The diseontinuity, &e, w
sine qua non condition is s:
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fied.

Al th i with ideal MHD equilibria in 30 vanish!

Ideal MHD equilibria. in arbitrary 31 geometry with smooth pressure exist!
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w discontinuous transform,

Magnitude of s mmst be provided by transport theory, conservation of helicity,
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€ tmay be compared to semi-analytic solutions o Neweomb equation

1 SPEC, nonlinear

Nonlinear convergence
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i equilibrium codes require the pressure, p(i), and transform, ¢4, profiles to be
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iil. Physieally meaningful p(1:) and +(v)) profiles are determined by transport theory.

‘With discontinuous
the rational surface!

Prablems with linearly-perturbed equilibria:

i. inconsistent with non-overlapping perturbed flux surfaces,

ansform, the perturbation penetrates past

il ineorreet prediction that the resonant harmonic of the perturbation is completely

shielded at the resonant surface



