Ghost-surfaces and island detection.
S.R.Hudson

Abstract

1. Various routines for
1. constructing quadratic-flux minimizing surfaces & ghost surfaces,
2. estimating island widths,
3. locating the homoclinic tangle, homoclinic points,
4. identifying the last closed flux surface,
5. locating cantori, flux across cantori,
6. almost straight fieldline coordinates for arbitrary, non-integrable fields,

have now been incorporated into HINT2, SPEC (of course), M3D-Cy, ...

This poster is online at http://w3.pppl.gov/~shudson/Papers/Conference/2015Sherwood/Hudson2015SherwoodCEMM.pdf



Classical Mechanics 101:

The action integral is a functional of a curve in phase space.
1. The action, S, is the line integral along an arbitrary “trial” curve {C : ¢ = q(¢)}, of the Lagrangian,

L=T(¢q)— Ulg,t), S= /E(q,d, t)dt
N N — C
kinetic  potential

2. For magnetic fields, B, the action is the line integral, of the vector potential, B =V x A,
S = / A -dl, along {C:0=06((),p=p(d)}.
C

3. Physical trajectories (magnetic fieldlines) extremize the action:

oS oS 0S oS .
0S = [ d¢ 6022 1 5p2= h = = /gB” — p/gB* d| 2= =0./gB¢ — ./gB? |.

extremal curves satisfy p = B? /B¢, and § = B? /B¢,

o
4. Action-extremizing, periodic curves may be minimizing or minimax. W
()

5. Ghost surfaces are defined by an action-gradient flow between the minimax and minimizing periodic orbit.



Ghost surfaces, a class of almost-invariant surface, are
defined by an action-gradient flow between the
action minimax and minimizing fieldline.

oS
1. Action, S|C] = f A - dl, and action gradient, 20 = /9B’ — pBS.
C
aS A C 9 . . b 9 . ) .
2. Enforce 5, = 0B°—/gB’ =0, i.e. invert § = BY/B°® to obtain p = p(0, 0, ¢); so that trial curve
P

is completely described by 6((), and the action reduces from S = S|p((),0(()| to S = 5[6(C
pletely y 0(C) p(€), 0(¢)] [6(C)]

90(¢;T) . 95]0] | L |
= ————— |, where 7 is an arbitrary integration parameter.

or 00

3. Define action-gradient flow:

4. Ghost-surfaces are constructed as follows:

i. Begin at action-minimax (“O”, “not-always-stable”) periodic fieldline, which is a saddle;
ii. initialize integration in decreasing direction (given by negative eigenvalue/vector of Hessian);
iii. the entire curve “flows” down the action gradient, 0,0 = —dy.S;

. . . . ___.---""f'—'_#_._-___-_-_h\“\--.__
iv. action is decreasing, 0,5 < 0; ,//[/_\

v. finish at action-minimizing (“X”, unstable) periodic fieldline.

vi. ghost surface described by x((, 7), where r is a fieldline label. M




The construction of extremizing curves of the action
generalized extremizing surfaces of the quadratic-flux

1.

08

08 08 08 :
= — +8p—— |, where | — = \/gB” — p\/gB* —— =6,/¢gB* — \/gB? |
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oS

. Extremal curves satisfy g—g =0, i.e. p= B”/BS, and 9, = 0, i.e. § = B?/B¢.

P

Introduce toroidal surface, p = P(#,¢), and family of angle curves, 0,(¢) = o+ pC/q + 0(C), where
a is a fieldline label; p and ¢ are integers that determine periodicity; and 67(0) = é(QTrq) =0.

On each curve, p,(¢) = P(0,(¢),¢) and 0,(¢), can enforce g—s = 0; generally v = g—g = (.
0

The pseudo surface dynamics is defined by § = B? /BS and p = Oy P 6 + OcP.

v

. Corresponding pseudo field B, = p B¢ e, + 0 BC eg + BCeC; simplifies to B, = B — — e,,.

V9

1 35S\ *
Introduce the quadratic-flux functional: | 5 = 3 f f dOd( (%)

. Allowing for d P, the first variation is dps = //deC 0P \/g (B989 + Biag) V.

Euler-Lagrange for QFMs



Alternative Lagrangian integration construction:
QFM surfaces are families of extremal curves of the
constrained-area action integral.

1. Introduce F'(p,0) = f A-dl—v (f OV - dl — a,) , where p = {p;}, 6 = {6;};
C C

2mq
where v is a Lagrange multiplier, and a is the required “area”, / 0(¢) dc¢.
0

2. An identity of vector calculus gives §F" = ] dl x (Vx A —vV0O x V() -dl,

C
extremizing curves are tangential to B — vV x V(=B — Lep =B,.
V9
: : .. .. OF OF
3. Constrained-area action-extremizing curves satisfy 99 — 0 and 98, — 0.
Pi i

4. The piecewise-constant representation for p(¢) and 0, F' = 0 yields p; = p;(0;-1,0;), so
the trial curve is completely described by 6;, i.e. F = F(0).

OF
50 = Do Fi(0i-1,0;) + 01 Fi1(0;,0i11),

so the Hessian, V2F(0), is tridiagonal (assuming v is given) and is easily inverted.

5. The piecewise-linear representation for (() gives

6. Multi-dimensional Newton method: 60 = — (VQF)_l -VF(0) ;

global integration, much less sensitive to “Lyapunov” integration errors.



The action gradient, v, is constant along the pseudo
fieldlines; construct Quadratic Flux Minimzing (QFM)
surfaces by pseudo fieldline (local) integration.

1.

The true fieldline flow along B around ¢ toroidal periods from (6, po)

produces a mapping, ( % ) = M1 ( % ) .
Pq 0

. Periodic fieldlines are fixed points of MY, i.e. 8, = 0y + 27, p, = po.

. In integrable case: given 6y, a one-dimensional search in p is required

to find the true periodic fieldline.

In non-integrable case, only the
(i) “stable” (action-minimax), O, (which is not always stable), and the

(ii) unstable (action minimizing), X, periodic fieldlines are guaranteed to survive.

vV

. The pseudo fieldline flow along B, = B — —e, around ¢ periods from (6o, po)

V9

produces a mapping, ( gq ) = P1 ( ;)/ ), but v is not yet known.
q 0

. In general case: given 6y, a two-dimensional search in (v, p) is required

to find the periodic pseudo fieldline.



Lagrangian integration is sometimes preferable,
but not essential:
can iteratively compute radia

IH

error” field

0. Usually, there are only the “stable” periodic fieldline and the unstable periodic fieldline,

1. At every 6 = o, determine v(«) via numerical search so that B — v e,/,/g yields a periodic integral curve;

where « is a fieldline label.

L K 'm

pseudo fieldlines
2. At the true periodic fieldlines, the required additional radial field is zero: i.e. v(ag) =0 and v(ax) = 0.

3. Typically, v(a) ~ Sin(qoz)m VT/X\ T

4. The pseudo fieldlines “capture” the true fieldlines; QFM surfaces pass through the islands.




Algorithm
Step 1: start with some magnetic field, in this case
provided by M3D-C;, in cylindrical coordinates . ..

1. Given B(R, ¢, Z).
2. Given guess, (Ryp, Zy), for magnetic axis on ¢ = 0 plane

i. locate magnetic axis by fieldline integration:

a. follow magnetic field line around A¢ = 27

b. iterate on (Ry, Zp), until fieldline closes . . .

3. Construct Poincaré plot in cylindrical coordinates. /
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Algorithm
Step 2: construct initial set of toroidal coordinates

1. Unless a better approximation is provided,
use circular cross section coordinates
based on magnetic axis.

2. Hereafter, will work in toroidal coordinates, (p, 6, ().

3. The coordinate transformation

R(p,0,() = Ry + pcos® %
;b ;(pveaC):Zg-FpSinQ //

will be iteratively updated to better approximate /{/{/{{I[l’l"'.‘:\\ }:“‘}‘\\\\

N /Il
4. Construct rotational transform. \\\\\\§ - ////

R

)
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Algorithm

construct rational pseudo-surface

Step 3

select rational, e.g. + = 1/2.

1. User must

2. The cylindrical harmonics of the rational surface

are Fourier decomposed in

straight pseudo fieldline poloidal angle.
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Algorithm
Step 3: update toroidal coordinates

1. The background toroidal coordinates are now based
on an interplation/extrapolation of the
constructed pseudo surfaces

2. The new coordinates coincide with flux coordinates
only on the pseudo surfaces.




Algorithm
Step 3: repeat:

1. Include additional surfaces.

2. Approximate straight fieldline coordinates.
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Algorithm
Step 3: repeat:

1. Can examine magnetic field varying in time.
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Given the
“rational surface”,
and shear,

it is easy

to determine

| the island separatrix.




Can also construct separatrix/homoclinic tangle

1. Shown is the

i. X point;
ii. the stable and unstable eigenvectors
of the tangent map (blue);

iii. the stable and unstable manifolds;

iv. the intersections of the
stable and unstable manifolds
(called the homoclinic points, red squares).




Plan is to construct a flexible library of routines to be

made freely available.
(No two users ever seem to want the same thing!)

1. Usually, I like to use the magnetic axis as the coordinate axis, but this has problems when
“sawteeth” are present;

1. coordinate axis = magnetic axis is now a user option.

2. Usually, | like to construct the magnetic vector potential and introduce an almost-straight

fieldline angle;
1. but sometimes it is better to work directly with the cylindrical field provided.

3. The separatrix is a singularity in straight fieldline coordinates;
1. under construction.

4. Planis to construct a collection of subroutines that can be used for a variety of purposes;
1. 1 plan to visit NIFS this summer and continue to develop these routines. ..



The structure of phase space is related to the
structure of rationals and irrationals.

— | O

~N o 0 AN

THE FAREY TREE;

or, according to Wikipedia,

THE STERN-BROCOT TREE. 1
alternating path— 1
mediant — @ ]ﬂ = pU T P1 (excluded region) < alternating path
B qo d1 qgo + 1
2
B 3
7 1 1 2 1 3 2 3

. Islands, and chaos, emerge at every rational:

about each rational, n/m, introduce “excluded region” with width r/mk; if excluded regions don’t overlap, then

KAM theorem: irrational flux surface can survive if [¢ — n/m/| > r/m" for all n, m.

W

Call ¢ strongly irrational. Diophantine condition

Greene’s residue criterion: the most robust flux surfaces have “noble” transform:

noble irrationals = limit of ultimately alternating paths = limit of Fibonacci ratios;

0 1 1 2 3 5 8 13 21 34 55 — _(1+\/_) 1 0112 35 8 13 21
€.g. TJGJI9I7§:§759§7ﬁ92_133_47"'%VZgOldenmean = v €8 573799933 E3 R 73297 340 -y




Irrational KAM surfaces break into cantori when

perturbation exceeds critical value.
Both KAM surfaces and cantori restrict transport.

o 1 2 1
1 3 < delete middle third > 3 1
_— ' ' ' ' @)mplete barrier]

—0 e — i — e — e —
"5 ogap o ----<partialbarrier|
— KAM surfaces are closed, toroidal surfaces

that stop radial field line transport

10° iterations — °

— Cantori have “gaps” that fieldlines can pass through; I
however, cantori can severely restrict radial transport \ hebo *§
— Example: all flux surfaces destroyed by chaos, “noble” =g |-z=- PN ' i s
but even after 100 000 transits around torus ~ cantori . | - e SEEE | 8
the fieldlines don’t get past cantori ! (PR EGR) = [[Fe==s w £ =

. 3

\!

— Regions of chaotic fields can provide some
confinement because of the cantori partial barriers. 10° iterations —»




Ghost surfaces are (almost) indistinguishable from
QFM surfaces

can redefine poloidal angle to unify ghost surfaces with QFMs.

1. Ghost-surfaces are defined by
an (action gradient) flow.

2. QFM surfaces are defined by
minimizing / (action gradient)?ds.

3. Not obvious if the different
definitions give the same surfaces.

4. For model chaotic field: \

(a) ghosts = thin solid lines;
(b) QFMs = thick dashed lines;>_)
(c) agreement is excellent;
(d) difference = O(e?),

where € is perturbation. /

5. Can redefine 6 to obtain
unified theory of ghosts & QFMs;

straight pseudo fieldline angle.




Isotherms of the steady state solution to the

anisotropic diffusion coincide with ghost surfaces;
analytic, 1-D solution is possible.

1.

. Simple transport model: anisotropic diffusion,

Transport along the magnetic field is unrestricted:

e.g. parallel random walk with long steps ~ collisional mean free path.

Transport across the magnetic field is very small:

e.g. perpendicular random walk with short steps &~ Larmor radius.

KJHVﬁT + HZJ_V%_T =0 RJ_/H,” ~ 10710 grid = 212 x 212,

steady state, no source, inhomogeneous boundary conditions.

. Compare numerical solution to “irrational” ghost-surfaces |:> A

The temperature adapts to KAM surfaces, cantori,
and ghost-surfaces!, i.c. T =T(p).

From T =T(p,0,() to|T = T(p) | allows an expression

for the temperature gradient in chaotic fields:

dT 1
8.8 ?
dp  Kp2+Kk1G

where 9 = /Bi ds, and G = /Vp -Vpds.
—— N—— —

quadratic flux metric

particle “knocked”
onto nearby field line

ghost-surfacwthvnﬂ cold

[Hudson & Breslau, 2008] hot




