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In order to ensure the utility of equilibrium models a set of tests must be preformed.  These tests include1 !
!

• Verification:  Demonstration that a code is correctly solving its set of equations!
!

• Validation:    Demonstration that a code is producing results consistent with experiment!
!

• Benchmark: Comparison of how different codes through a common test problem!
!
In this work a problem is described which attempts to verify and benchmark the ideal MHD response to 
applied 3D fields.  The problem is examined using non-linear (VMEC2, NSTAB3) and linear (MARS-F4) 
codes. Examples validating the nonlinear and linear ideal 3D MHD models are also shown.

Validation tests using the Dirac-δ Response

VMEC NSTAB

The equations of ideal MHD predict that singular currents will form at resonant rational surfaces, if nested 
flux surfaces are to be preserved
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sin (m1 −1)θ − n1ζ( ) Current density parallel to the magnetic field for DIII-D 

equilibrium 153485 showing peaked structures at various 
rational surfaces.  Subplot shows exaggerated (x20) edge of 
VMEC equilibria with displacement colored (~1 [cm] peak).

Magnetic diagnostic response as calculated by DIAGNO for 
the VMEC equilibrium.  Lines correspond to variations +/-5% in 

bootstrap current profile amplitude.

Radial displacement of VMEC flux surfaces for the perturbed 
cylindrical equilibrium.  The slope of the displacement at the 
rational surface appears to scale with radial grid resolution.

Radial displacement as a function of shear across the q=2 
surface (512 radial grid points).

The Pfirsch-Schlütter resonance diverges across a rational surface which implies infinite total current.  Thus 
pressure gradients must vanish at all rational surfaces (pressure becomes pathological).  [H. Grad 1967]
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In magnetic coordinates the gradient operator becomes

Fourier decomposition leads to 

This gives us an equation of the form
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Pfirsch-Schlütter resonance Dirac-δ

To avoid this difficulty we choose our problem to have zero 
pressure and a fixed rotational transform profile.  To further 
simplify the problem, a circular cross section equilibrium is 
considered.

Φedge = 6.28

A helical perturbation is then applied to the axisymmetric equilibrium

Which can be redefined in terms of R and Z harmonics

If we examine Newcomb’s equation we find that only in the limit of continuous iota should we recover full 
shielding of the resonant perturbation (Loizu talk and Hudson poster) with overlapping surfaces, thus a 
minimum ∆-iota is required and the perturbation penetrates.
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The VMEC code solves for nonlinear ideal MHD plasma equilibrium by minimizing the MHD energy.  It uses 
a magnetic field parameterization which enforces that all flux surfaces are nested.
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The NSTAB code solves for the nonlinear ideal MHD plasma equilibrium by minimizing the ideal MHD 
energy.  It uses a magnetic field parametrization which enforces that all flux surfaces are nested.

The test problem was attempted using a perturbation of amplitude 1E-4, minor radius of 1.0, and major 
radius of 100.0.  Scans in radial resolution indicate a shielding like response at the q=2 surface.

At all times the displacement derivative remains significantly below unity indicating that surfaces have not 
overlapped. The dependence on local shear is weak.

To validate the plasma response model the diagnostics response of a DIII-D discharge to applied RMP fields 
was evaluated.  Good agreement was found although n>1 harmonics were required for an n=1 applied field.

The maximum displacement derivative as a function of the grid 
resolution indicates at all times the surfaces do not overlap.
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The NSTAB calculation of the benchmark problem showed similar behavior to that of VMEC at low radial 
resolution.

The main axisymmetric coefficient shows a singular behavior 
near the magnetic axis which is slowly convergent under mesh 

refinement.

A lower resolution the behavior near the rational surface 
appears continuous but becomes increasingly sharp at higher 

resolution.

A helical perturbation of the equilibrium is also present.
The m=2, n=0 is a result of the non-linearity of the code.
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The NSTAB code can be run in purely cylindrical geometry allowing toroidal modes to be decoupled.

In cylindrical form the behavior of near the rational surface is 
preserved.

Here the nonlinear coupling between modes is completely 
suppressed.

The toroidal current density indicates a response at the q=2 
surface.

MARS-F
The MARS-F code solves for the perturbed linear ideal MHD plasma response given an axisymmetric 
equilibrium as the unperturbed state.  It solves the following set of equations:
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Because MARS-F is a perturbative in nature, flux surfaces may overlap at each rational surface. The 
verification problem was examined using grid spacing equidistant in flux.  This allows direct comparison with 
the NSTAB and VMEC results.

Evaluation of the current density has been recently improved in VMEC through an improved radial 
differencing technique.  The current density is written
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However the covariant components of the field are calculated on a half radial grid
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Work is underway to validate the NSTAB model against experimental data.  

Deformation of a flux surface near a rational surface for DIII-D 
shot 142603.  Inboard ripple is consistent with linear 

calculations.

The MARS code predicts a strong delta current response at 
the q=2 surface.  

The overlap criterion is clearly violated for this mode.

In this work a perturbed circular cross section large aspect ratio tokamak equilibrium was investigated by 
both linear and non-linear ideal MHD equilibrium codes!
!

• Exact solutions to this problem indicate that either the constraint of continuous flux surfaces or 
continuous rotational transform profiles may be violated!

!
• The nested flux surface constraint prevents the non-linear codes (VMEC, NSTAB) from achieving a true 

Dirac-δ response at the rational surface.!
!

• Lack of a nested flux surface constraint allows the linear code (MARS-F) to realize a Dirac-δ response.!
!
Validation of the VMEC and MARS-F codes indicate that both are capable of reproducing experimental 
measures of 3D fields.  Inclusion of a ∆iota model in the various codes would allow for an exact benchmark.
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For experimental tokamak geometries the normal components 
of the magnetic field indicate strong responses near the edge.

Validation of the MARS-F plasma response model against DIII-
D shot 153485 shows good agreement.  Lines correspond to 

variations +/-5% in bootstrap current profile amplitude.

The response of the ideal perturbed MHD model has been validated against DIII-D shot 153485.  As in the 
non-linear case the agreement is good.


