Fractal Pressure Profiles and Equilibria in Cylindrically-Symmetric Ideal MHD

B. F. Kraus and S. R. Hudson Princeton Plasma Physics Laboratory November 1, 2016; presented at the 58th Annual Meeting of APS DPP Defining a fractal pressure and understanding its physics

Goals

- 1. Ideal MHD equilibria with nested flux surfaces require fractal pressure
	- \bullet Generally perturbed toroidal equilibria suffer from unphysical infinite currents
- \bullet Currents vanish if the pressure is flat on all resonances
- 2. Mathematics for entertaining fractal profiles
	- Non-integrable fields \implies KAM, Diophantine condition
	- Dense sets, nowhere dense sets, and Lebesgue measure
- 3. Approximate fractality numerically
	- Implement a fractal grid
	- Quantify how robust each surface is
- Physics of fractal pressure in a cylinder

1. Nested flux surfaces corrupted by unphysical infinite currents

$$
\boldsymbol{J}_{\perp} = \frac{\boldsymbol{B} \times \nabla p}{B^2} \qquad \boldsymbol{J}_{\parallel} = \lambda \boldsymbol{B} \quad (2)
$$

From current conservation:

$$
\nabla \cdot \bm{J}_{\perp} = -\nabla \cdot (\lambda \bm{B}) = -\bm{B} \cdot \nabla \lambda \tag{3}
$$

 \bullet Above is a magnetic differential equation:

- \bullet $\beta = \int_0^1$ $\overline{0}$ $dr\ p(r) \implies$ Lebesgue integration
- Prove $p(r) \neq 0, \forall r$?
- Where is $\nabla p = 0$ distributed in ϵ ?
- Staircase $p(r) \implies$ what fields \bm{B}, \bm{J} ?
- Numerically: Approximate on a discrete grid?

Flatten by Diophantine condition \overline{n} \overline{d} , $\forall n, m \in \mathbb{N}$. $\overline{}$ ω $>$ $\overline{}$ m^k \overline{m} $\overline{}$ $\overline{}$ (D) $47 \frac{3}{5} = 2/3$ $1/2$ $\bigoplus_{i=1}^n\bigoplus_{j=1}^n\bigoplus_{j=1}^n\bigoplus_{j=1}^n\bigoplus_{j=1}^n\bigoplus_{j=1}^n\bigoplus_{j=1}^n\bigoplus_{j=1}^n\bigoplus_{j=1}^n\bigoplus_{j=1}^n\bigoplus_{j=1}^n\bigoplus_{j=1}^n\bigoplus_{j=1}^n\bigoplus_{j=1}^n\bigoplus_{j=1}^n\bigoplus_{j=1}^n\bigoplus_{j=1}^n\bigoplus_{j=1}^n\bigoplus_{j=1}^n\bigoplus_{j=1}^n$ $\boldsymbol{\omega}$ **A MANINE**

2. Number and measure theory have tools for finding β

$$
(\mathbf{B} \cdot \nabla)_{mn} = \partial_{\theta} t + \partial_{\phi} = \epsilon m - n \qquad (4)
$$

• Decompose
$$
\lambda = \sum_{m,n} \lambda_{mn} \cos(m\theta - n\phi)
$$

$$
\lambda_{mn} = \underbrace{\Delta_{mn} \delta(mt - n)}_{1. \text{ Delta spike}} - \underbrace{\frac{(\nabla \cdot \mathbf{J}_{\perp})_{mn}}{m t - n}}_{2. \ 1/x \text{ singularity}} \tag{5}
$$

1. Finite current through infinitesimal wire: $J = I/a \rightarrow J = I\delta(x)$

2. \int_0^{ϵ} 1 $\frac{1}{x}dx$ is logarithmically divergent \rightarrow infinite current \circ

$$
t = \frac{n}{m}, \quad \nabla p \neq 0 \implies \mathbf{I}_{\parallel} \to \infty \tag{6}
$$

$$
\mathbf{I}_{\parallel} \propto \left(\nabla \cdot \frac{(\mathbf{B} \times \nabla p)}{B^2}\right)_{mn} \to \pm \infty
$$

Unless $\nabla p = 0$ when $t = \frac{n}{\overline{}}$

 m

Grad's notion, 1967. [\[1\]](#page-0-0)

To avoid unphysical currents at resonances: $\nabla p = 0$ on excluded rational intervals, So prescribe

$$
p'(t) = \frac{dp}{dt} = \begin{cases} 0 & |t - \frac{n}{m}| < \frac{d}{m^k} \\ -1 & \text{otherwise,} \end{cases}
$$

Physics of plasma with fractal p

• Farey grid spacing converges rigorously to exact solution • Fractal pressure is compatible with non-smooth $\mathbf{B}(\mathbf{r})$ and discontinuous (but finite!) $J(r)$

• What sets of (d, k) are typical for plasma discharges? • How are the most robust irrationals related? This work was supported by DOE contract DE-AC02-09CH11466.

H. Grad. Toroidal containment of a plasma. Phys. Fluids, 10 (1):137,

, $\forall \frac{n}{n}$ $\frac{n}{m} \in \mathcal{F}_j;$

nowhere-dense subset

-
-
- Questions:
-
-

References

- 1967.
-

$$
= [0, 1] \to x_1 = \left[0, \frac{d}{1^k}, 1 - \frac{d}{1^k}, 1 \right]
$$

E. F. Lee. The Structure and Geometry of the Brjuno Numbers. PhD thesis, Boston University, 1998.