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Abstract:

The nature of ideal MHD equilibria in three-dimensional geometry is profoundly affected by
resonant surfaces, and this is particularly true for equilibria with non-zero pressure. If not
treated carefully, non-physical currents arise in equilibria with continuously-nested mag-
netic surfaces. We demonstrate that three-dimensional, ideal-MHD equilibria, with nested
surfaces and δ-function current-densities (i.e. sheet currents) that produce a discontinu-

ous rotational-transform are well defined and tractable computationally. The results are
of direct practical importance: we predict that resonant magnetic perturbations penetrate
past the rational surface (i.e. “shielding” is incomplete, even in purely ideal-MHD) and
that the perturbation is amplified by plasma pressure, increasingly so as stability limits are
approached.

1 Importance of ∇p = j × B

The properties and numerical computation of three-dimensional (3D), ideal-MHD equilib-
ria, as described by the seemingly simple, yet deceptively complicated, ideal force-balance
equation ∇p = j×B is of fundamental importance for understanding the behavior of both
magnetically confined fusion and astrophysical plasmas [1, 2]. The instabilities that cause
edge-localized modes (ELMs), an important concern for ITER [3], are widely believed
to be ideal, peeling-ballooning modes [4]; and a ‘hot-topic’ of present research is to dis-
cover how these modes may be suppressed by applying resonant magnetic perturbations
(RMPs), i.e. by 3D effects [5]. Whilst there exist extended-MHD codes [6] with non-
ideal physics, these codes come with significant computational cost; and so the plasma
response to 3D perturbations is routinely determined using codes such as IPEC [7], the
ideal, perturbed equilibrium code.
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However, there are two fundamental difficulties that are frequently over-looked in
calculations of ideal-MHD equilibria with nested flux-surfaces and smooth pressure and
rotational-transform profiles. The first is the existence of infinite currents near resonant,
rational rotational-transform surfaces, and the second is that ideal-MHD equilibria are
not analytic functions of the 3D boundary.

Our new class of solutions for ideal-MHD equilibria avoids these problems. Most
importantly, our solutions yield predictions that are in sharp contrast to previous pre-
dictions, and which may have direct implications for understanding the effect of RMPs
in tokamaks. Even in ideal-MHD, a resonant perturbation penetrates past the rational
surface and into the core of the plasma; and the perturbation is magnified by pressure
inside the resonant surface, increasingly so as stability limits are approached.

The content and outline of this paper is as follows. As our new class of solutions
and their properties have already been described in detail in earlier publications [8, 9],
this paper shall review the salient features from an intuitive perspective and raise (and
hopefully clarify) some of the problematic issues that remain. To appreciate the new class
of solutions, it is required to understand the difficulties with the conventional solutions, so
this paper first provides a review of the key problem of equilibria with nested flux surfaces
and smooth pressure gradients, namely the formation of unphysical currents near rational
surfaces. Then, we briefly review the problem of non-analyticity of ideal-MHD equilibria
considered as functions of the three-dimensional boundary, and how this undermines
perturbative approaches; and we provide an illustration in cylindrical geometry. Both
of these problems are avoided in equilibria with sheet currents that create discontinuous

rotational-transform, and the characteristics of RMP penetration in such equilibria are
described.

2 Unphysical, infinite currents

The infinite, unphysical currents arise from enforcing charge conservation, ∇ · j = 0, where
j = ∇ × B. It is convenient to write the current-density as j ≡ uB + j⊥, and by cross-
ing ∇p = j × B with B we derive an expression for the perpendicular current-density,
j⊥ = B × ∇p/B2. Wherever there are pressure-driven, perpendicular current-densities,
there must also be parallel current-densities that satisfy B · ∇u = −∇ · j⊥. Such equa-
tions, called magnetic differential equations [10], take a simple form in straight-field line
coordinates, (ψ, θ, ζ), for which B = ∇ψ×∇θ+ ι-(ψ)∇ζ ×∇ψ, where 2πψ is the toroidal
flux enclosed by a flux surface, θ and ζ are straight fieldline poloidal and toroidal angles,
and ι-(ψ) is the rotational-transform. (Note that B · ∇ζ =

√
g−1, where

√
g is the coordi-

nate Jacobian.) This is a linear equation, and may be solved in Fourier space by the rep-
resentation u =

∑

um,n exp(imθ − inζ). The directional-derivative
√
gB · ∇ = ι- ∂θ + ∂ζ ,

reduces to
√
gB · ∇ = i( ι-m− n). The solution for each Fourier harmonic of the parallel

current-density is

um,n =
i(
√
g∇ · j⊥)m,n

x
+ ∆m,n δ(x), (1)
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where x ≡ ι-m−n is the “distance” in rotational-transform from the rational surface, and
∆m,n is an as-yet undetermined constant. Two singularities are present: a pressure-driven,
so-called “Pfirsch-Schlüter”, 1/x current-density that arises around rational surfaces, and
a δ-function current-density that develops at rational surfaces.

Singularities in the current-density are acceptable. As a simple example, consider a
finite, non-zero current passing along a thin wire: if the cross-sectional area of the wire is
very thin, then representing the current-density as a δ-function is an excellent mathemat-
ical approximation to the physical reality. In the limit that the the conductivity becomes
infinite, a wire of zero cross-sectional area can support a finite current, and the δ-function
approximation becomes exact. The existence of δ-function current-densities, which are
also sometimes called “sheet” currents or “surface” currents, is perfectly compatible with
the physical model of ideal-MHD.

Singularities in the current, however, are not acceptable: the total current,
∫

j · ds,
passing through each and every surface must remain finite for any physically acceptable
equilibrium. The current resulting from the pressure-driven Pfirsch-Schlüter density pass-
ing through the cross-sectional area enclosed by the flux-surfaces defined by x = ǫ and
x = δ between θ = 0 and θ = π/m is proportional to

∫ δ

ǫ
1/x dx, which logarithmically

approaches infinity as ǫ approaches zero.
This is not physical. Furthermore, the presence of an equal-and-opposite infinite

current, in a sense, through a similar cross-sectional surface on the opposing side of the
rational surface (i.e., the surface bounded by x = −ǫ and x = −δ) should not be thought
of as a panacea. It would seem that the ideal-MHD equilibrium model, with nested flux-
surfaces, has the fatal flaw of not allowing for pressure gradients in a small-but-finite

neighborhood of each rational surface! Considering that rational surfaces are dense in
any continuous magnetic field with shear, and therefore the regions in which the pressure
gradient must be zero will overlap, this means that there can be no pressure at all in
equilibria with nested flux surfaces and smooth pressure (unless the rotational-transform
is everywhere irrational, as we discuss in more detail below).

There are other equilibrium models that should be mentioned, but which will not
be discussed at length in this article. If the pressure gradient is allowed to be discon-

tinuous, a pressure profile with finite gradients where the rotational-transform is suffi-
ciently irrational will provide a non-trivial, finite-pressure equilibriuum. For example:
choose p′(ψ) = 1 where the rotational-transform satisfies a Diophantine condition, e.g.
| ι-(ψ) − n/m| > k/m2 for all rationals n/m and some k > 0, and p′(ψ) = 0 elsewhere.
Such a profile would avoid the pressure-driven infinite-currents near the rational surfaces
and would yield a non-trivial pressure profile (by virtue of the fact that a finite measure
of irrationals satisfy the Diophantine condition). In this case, however, the equilibrium
must display fractal properties, described by Grad as “pathological” [1], and would not
be amenable to standard numerical discretization (it is almost impossible to constrain the
topology of a non-integrable field to be consistent with a given, fractal pressure). Other
possibilities include equilibria in which the pressure is discontinuous, as is assumed in the
Stepped Pressure Equilibrium Code (SPEC) [11]; and equilibria for which the boundary
is appropriately constrained to ensure that the resonant harmonic of the geometry, which
is related to the numerator in Eq.(1), vanishes in the vicinity of the rational surfaces
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[12, 13, 14].

3 Non-analyticity

The second problem, the non-analyticity of ideal-MHD equilibria, is encountered when
computing the plasma displacement, ξ = ξψeψ + ξθeθ + ξζeζ , induced by an O(ǫ) pertur-
bation to the boundary of an equilibrium state. Assuming an expansion

ξ ≡ ǫ ξ1 + ǫ2 ξ2 + . . . , (2)

the first-order term satisfies L0[ξ1] = 0, where

L0[ξ] ≡ ∇δp− δj × B − j × δB, (3)

where the ideal variations in the magnetic field and pressure are δB[ξ] ≡ ∇× (ξ × B)
and δp[ξ] = (γ − 1) ξ · ∇p− γ∇ · pξ.

The linear operator, L0[ξ], is singular. To simultaneously match a non-trivial condition
at the boundary and the condition that δB · ∇ψ = 0 at the rational surface (so that a
magnetic island does not form), the solution for ξ1 must, generally, be discontinuous [8].

A discontinuous plasma displacement is, however, inconsistent with the assumption
of nested flux-surfaces: in fact, magnetic surfaces overlap if the displacement anywhere
violates |dξ/dψ| < 1. The second order term satisfies L0[ξ2] = −δj[ξ1] × δB[ξ1], and ξ2

is even more singular than ξ1. That perturbation theory is not a valid approach for
computing ideal equilibria with nested surfaces was known by Rosenbluth et al. [15], who
wrote “we must abandon the perturbation theory approach” when computing ideal-MHD
equilibria in 3D. These problems are partly associated with what might be considered
fundamental flaws in ideal-MHD [16], namely that ideal-MHD dynamical evolutions do
not allow the topology of the magnetic field to “tear”.

Despite such flaws in ideal-MHD, the equation of force balance, ∇p = j×B, which this
paper is primarily concerned with, remains an excellent description of the macroscopic
forces that determine plasma equilibrium properties. Considering first the presumably
simpler task, that of only seeking static solutions, and ignoring the more-complicated
questions regarding ideal dynamical evolution, the main obstruction to computing math-
ematically self-consistent solutions to ∇p = j × B with nested flux surfaces and smooth
pressure profiles was that well-defined solutions had not, until quite recently, been dis-
covered. There is, surprisingly, a class of ideal-MHD equilibria with nested magnetic
surfaces and arbitrary pressure profiles that eliminates both the infinite currents and the
non-analyticity.

In recent work [17] we, for the first time, computed the 1/x and δ-function singular
current-densities in 3D equilibria; and we realized that self-consistent solutions demand
locally-infinite shear at the resonant surfaces. We then [8] introduced a new class of solu-
tion that admits additional δ-function current-densities that produce finite sheet currents,
with a commensurate discontinuity in the rotational-transform. Removing the rational
surfaces removes both the non-physical currents and the non-analyticity.
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3.1 Illustration in cylindrical geometry

For illustration and verification, we construct such an equilibrium in cylindrical geometry,
with “major” radius R and minor radius a, and calculate the linear, ideal response to a
resonant boundary perturbation. (Note, as mentioned above, we do not explicitly follow
the ideal dynamical response, but instead simply solve ∇p = j × B with the perturbed
boundary, i.e. we seek the static solution.) The cylindrically symmetric solution to
∇p = j × B satisfies

dp

dr
+

1

2

d

dr

[

B2
z

(

1 + ι-2
r2

R2

)]

+
r ι-2B2

z

R2
= 0, (4)

where ι- ≡ RBθ/rBz, and is uniquely determined by the value of the axial field at the
origin, e.g. Bz(0) = 1, by an arbitrary pressure profile, p(r), and a rotational-transform
profile, ι-(r). This equation may be cast as an ordinary differential equation for Bz; and
can be integrated radially (even for discontinuous rotational-transform profiles) from r = 0
to r = a,

In cylindrical geometry there is no coupling, to lowest order, between perturbations
of different helicities; and we may for simplicity of illustration imagine that there is a
single resonant surface of concern. (In a fully three-dimensional configuration, all rational
surfaces within the equilibrium will potentially create problems.) We therefore choose a
rotational-transform profile

ι-(r) =

{

ι-0 − ι-1(r/a)
2 + ∆ ι-/2, for r < rs,

ι-0 − ι-1(r/a)
2 − ∆ ι-/2, for r > rs,

(5)

with ι-0 and ι-1 chosen so that ι-(r) jumps across the rational ι-s ≡ n/m, namely ι-(rs) =
ι-s ± ∆ ι-/2. The pressure can be an arbitrary smooth function, e.g.

p(r) = p0[1 − 2(r/a)2 + (r/a)4], (6)

and for later reference we define β ≡ 2p(0)/B2
z (0).

In cylindrical geometry, the linearized equation, L0[ξ] = 0, reduces to Newcomb’s equa-
tion [18],

d

dr

(

f
dξ

dr

)

− gξ = 0, (7)

where ξr ≡ ξ(r) cos (mθ − nζ), and f and g are determined by the equilibrium [8]. For
∆ ι- = 0, Newcomb’s equation is singular where ι-(rs) = n/m, because there is a order-
two zero in f(r) and an order-one zero in g(r). For ∆ ι- 6= 0, the singularity is removed;
and the equilibrium equations comprise an analytic function of the 3D boundary and the
perturbation expansion is valid.

Fig.1 shows the result of numerical integration of Eq. (7), with different values of p0

and for ∆ ι- = 10−3. The linear radial displacement is continuous and smooth provided
∆ ι- 6= 0, and the condition |dξ/dψ| < 1 is satisfied if ∆ ι- > ∆ ι-min, which can be estimated
theoretically [8]. Even for a small, local change in the transform profile the global solution
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Fig.1. Solutions for the perturbed displacement for β = 0% (lower curve) to β = 1%
(upper curve); and for ∆ ι- = 10−3. Reproduced from [9].

is significantly different and the displacement penetrates inside the resonant surface and
into the origin. In fact, for non-zero pressure, the perturbation to the displacement inside
the resonant surface is magnified, extremely so as ideal-stability limits are approached.
To quantify the amplification and penetration of the perturbation, we define

Armp ≡ ξs/ξa , Prmp ≡ 1 − r∗/rs , (8)

where r∗ is the radius at which ξ(R∗) = ξs/e. In Fig.2 we show these quantities as a
function of β. These figures show that as the equilibrium approaches the Suydam limit
for interchange stability,

DS =

(

2p′ ι-2

rB2
z ι-

′2

)

s

<
1

4
, (9)

there is a fantastic increase in both the amplification and penetration of the resonant
magnetic perturbation.

3.2 Verification of a nonlinear equilibrium code

Removing the singularity associated with the rational surface (achieved by allowing for
a sheet current that results in a discontinuous rotational-transform) means that ideal-
MHD equilibria become analytic functions of the three-dimensional boundary, and this
in turn allows nonlinear 3D ideal-MHD equilibrium codes to be verified against the linear
codes. Presently, the widely-used, 3D, nonlinear ideal-MHD equilibrium codes VMEC
[19] and NSTAB [20] are restricted to work with smooth functions and cannot, formally,
compute equilibria with discontinuous rotational-transform (though, finite radial resolu-
tion seems to imply an ‘effective’ discontinuity [21]). The SPEC [11] code does allow for
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Fig.2. Amplification (left) and penetration (right) of the perturbation on the resonant
surface as a function of β, for ∆ ι- = 0.005 (circles) and ∆ ι- = 0.001 (stars). The vertical
dashed line indicates where the Suydam condition is not satisfied. Reproduced from [9].

discontinuities. In Fig.3, we compare the linear plasma displacement computed using a
“linearized” version of SPEC to the analytic solution, with excellent agreement. Futher-
more, fully nonlinear SPEC solutions were compared to the linear solutions [8], obtaining
the as-expected agreement.

We make two final comments. Our work has introduced a new class of solution to
∇p = j × B with discontinuous transform. In this paper, we have considered a sin-
gle rational surface. To ensure the removal of all non-physical currents in generally
perturbed configurations, i.e. in arbitrary, three-dimensional geometry, we may take a
stepped rotational-transform profile that is piecewise irrational. Second, in this paper we
have not addressed the ideal dynamical evolution from a state with continuous transform
to a state with discontinuous transfrom; this is a matter of ongoing investigation [16].
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