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The nature of ideal MHD equilibria in three-dimensional geometry is profoundly affected by res-
onant surfaces, and this is particularly true for equilibria with non-zero pressure. If not treated
carefully, infinite, non-physical currents arise in equilibria with continuously-nested magnetic sur-
faces. We demonstrate that three-dimensional, ideal-MHD equilibria, with nested surfaces, and with
δ-function current-densities that produce a discontinuous rotational-transform, are well defined and
can be computed both perturbatively and using fully-nonlinear equilibrium calculations. The re-
sults are of direct practical importance: we predict that resonant magnetic perturbations penetrate
past the rational surface (i.e. “shielding” is incomplete, even in purely ideal-MHD) and that the
perturbation is amplified by plasma pressure, increasingly so as stability limits are approached.

I. IMPORTANCE OF ∇p = j × B

The properties and numerical computation of three-
dimensional (3D), ideal-MHD equilibria, as described by
the seemingly-simple yet deceptively-complicated, ideal
force-balance equation

∇p = j × B, (1)

is of fundamental importance for understanding the be-
havior of both magnetically-confined fusion and astro-
physical plasmas [1, 2]. The potentially-dangerous in-
stabilities that cause edge-localized modes (ELMs), an
important concern for ITER [3] are widely believed to
be ideal, peeling-ballooning modes [4]; and a ‘hot-topic’
of current research is to discover how these modes may
be suppressed by applying resonant magnetic perturba-
tions (RMPs), i.e. by 3D effects [5]. Whilst there exist
extended-MHD codes [6] with non-ideal physics, these
codes come with significant computational cost; and so
the plasma response to 3D perturbations is routinely de-
termined using codes such as IPEC [7], the ideal, per-
turbed equilibrium code.

However, there are two fundamental difficulties that
are frequently over-looked in calculations of ideal-MHD
equilibria with nested flux-surfaces and smooth pres-
sure and rotational-transform profiles. The first is the
existence of infinite currents near resonant, rational
rotational-transform surfaces, and the second is that
ideal-MHD equilibria are not analytic functions of the
3D boundary.

Our new class of solutions for ideal-MHD equilibria
avoids these problems. Most importantly, our solutions
yield predictions that are in sharp contrast to previous
predictions, and which may have direct implications for
understanding the effect of RMPs in tokamaks. Even in
ideal-MHD, a resonant perturbation penetrates past the
rational surface and into the core of the plasma; and the
perturbation is magnified by pressure inside the resonant
surface, increasingly so as stability limits are approached.

The content and outline of this paper is as follows.
As our new class of solutions and their properties have
already been described in detail in earlier publications
[8, 9], this article shall review the salient features of
these new solutions from an intuitive perspective and
raise (and hopefully clarify) some of the problematic is-
sues that remain. To appreciate the new class of solu-

tions, it is required to understand the difficulties with
the conventional solutions; so, this paper first provides
a review of the key problem of equilibria with nested
flux surfaces and smooth pressure gradients, namely the
formation of unphysical currents near rational surfaces.
Then, we briefly review the problem of non-analycity of
ideal-MHD, and how this undermines perturbative ap-
proaches; and we provide an illustration in cylindrical
geometry.

II. UNPHYSICAL, INFINITE CURRENTS

The infinite, unphysical currents arise from enforcing
charge conservation, ∇ · j = 0, with smooth pressure pro-
files. It is convenient to write the current density as
j ≡ uB + j⊥, and by crossing ∇p = j × B with B we
derive an expression for the perpendicular current den-
sity,

j⊥ =
B ×∇p
B2

. (2)

Wherever there are pressure-driven, perpendicular
current-densities, there must also be parallel current-
densities that satisfy B · ∇u = −∇ · j⊥. Such equations,
called magnetic differential equations [10], take a simple
form in straight-field line coordinates, (ψ, θ, ζ), for which

B = ∇ψ ×∇θ + ι-(ψ)∇ζ ×∇ψ, (3)

where 2πψ is the toroidal flux enclosed by a flux sur-
face, θ and ζ are straight fieldline poloidal and toroidal
angles, and ι-(ψ) is the rotational-transform. (Note that

B · ∇ζ =
√
g−1, where

√
g is the coordinate Jacobian.)

This is a linear equation, and may be solved in Fourier
space by the representation u =

∑

um,n exp(imθ − inζ).
The directional-derivative

√
gB · ∇ = ι- ∂θ + ∂ζ , reduces

to
√
gB · ∇ = i(ι-m− n). The solution for each Fourier

harmonic of the parallel current is

um,n =
i(
√
g∇ · j⊥)m,n

x
+ ∆m,n δ(x), (4)

where x ≡ ι-m − n is the “distance” in rotational-
transform from the rational surface, and ∆m,n is an as-
yet undetermined constant.

Two singularities are present: a pressure-driven, so-
called “Pfirsch-Schlüter”, 1/x current-density that arises
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around rational surfaces, and a δ-function current-
density that develops at rational surfaces.

Singularities in the current-density are acceptable. As
a simple example, consider a finite, non-zero current pass-
ing along a thin wire: if the cross-sectional area of the
wire is very thin, then representing the current density as
a δ-function is an excellent mathematical approximation.
In the limit that the the conductivity becomes infinite,
a wire of zero cross-sectional area can support a finite
current, and the δ-function approximation becomes ex-
act. The existence of δ-function currents, which are also
sometimes called “sheet” currents or “surface” currents,
is perfectly compatible with the physical model of ideal-
MHD.

Singularities in the current, however, are not accept-
able: the total current,

∫

j · ds, passing through each

and every surface must remain finite for any physically
acceptable equilibrium. The current resulting from the
pressure-driven Pfirsch-Schlüter density passing through
the cross-sectional area enclosed by the flux-surfaces
x = ǫ and x = δ between θ = 0 and θ = π/m is pro-

portional to
∫ δ

ǫ
1/x dx, which logarithmically approaches

infinity as ǫ approaches zero.
This is not physical. The presence of an equal-and-

opposite infinite current, in a sense, through a similar
cross-sectional surface on the opposing side of the ratio-
nal surface (i.e., the surface bounded by x = −ǫ and
x = −δ) should not be thought of as a panacea. It would
seem that the ideal-MHD equilibrium model, with nested
flux-surfaces, has the fatal flaw of not allowing for pres-
sure gradients in a small-but-finite neighborhood of each
rational surface! Considering that rational surfaces are
dense in any continuous magnetic field with shear, and
therefore the regions in which the pressure gradient must
be zero will overlap, this means that there can no pressure
at all in equilibria with nested flux surfaces and smooth
pressure (unless the rotational-transform is everywhere
irrational, as we discuss in more detail below).

There are other equilibrium models that should be
mentioned, but which will not be discussed at length
in this article. If the pressure gradient is allowed to
be discontinuous, a pressure profile with finite gradi-
ents where the rotational-transform is sufficiently irra-
tional will provide a non-trivial, finite-pressure equilib-
riuum. For example: choose p′(ψ) = 1 where the
rotational-transform satisfies a Diophantine condition,
e.g. |ι-(ψ)−n/m| > k/m2 for all rationals n/m and some
k > 0, and p′(ψ) = 0 elsewhere; such a profile would
avoid the pressure-driven infinite-currents near the ratio-
nal surfaces, yet would yield a non-trivial pressure profile
(by virtue of the fact that a finite measure of irrationals
satisfy the Diophantine condition). In this case, how-
ever, the equilibrium must display “pathological” fractal
properties, [1], and would therefore not be amenable to
standard numerical discretization (it is almost impossible
to constrain the topology of a non-integrable field to be
consistent with a given, fractal pressure). Other possibil-
ities include equilibria in which the pressure is discontin-
uous, as is assumed in the Stepped Pressure Equilibrium
Code (SPEC) [11], and equilibria for which the boundary
is appropriately constrained to ensure that the resonant
harmonics of the geometry vanish in the vicinity of the
rational surfaces [12–14].

III. NON-ANALYTICITY

The second problem, the non-analyticity of ideal-MHD
equilibria, is encountered when computing the plasma
displacement, ξ = ξψeψ+ξθeθ+ξ

ζeζ , induced by an O(ǫ)
perturbation to the boundary of an equilibrium state.
Assuming an expansion

ξ ≡ ǫ ξ
1

+ ǫ2 ξ
2

+ . . . , (5)

the first-order term satisfies L0[ξ1
] = 0, where

L0[ξ] ≡ ∇δp− δj × B − j × δB, (6)

where the ideal variations in the magnetic field and pres-
sure are δB[ξ] ≡ ∇× (ξ × B) and δp[ξ] = (γ−1) ξ ·∇p−
γ∇ · pξ.

The linear operator, L0[ξ], is singular. To simultane-
ously match a non-trivial condition at the boundary and
the condition that δB · ∇ψ = 0 at the rational surface
(so that a magnetic island does not form), the solution
for ξ

1
must, generally, be discontinuous [8].

A discontinuous plasma displacement is, however, in-
consistent with the assumption of nested flux-surfaces: in
fact, magnetic surfaces overlap if the displacement any-
where violates |dξ/dψ| < 1. The second order term sat-
isfies L0[ξ2

] = −δj[ξ
1
] × δB[ξ

1
], and ξ

2
is even more sin-

gular than ξ
1
. That perturbation theory is not a valid

approach for computing ideal equilibria with nested sur-
faces was known by Rosenbluth et al. [15], who wrote
“we must abandon the perturbation theory approach”
when computing ideal-MHD equilibria in 3D.

These problems are partly associated with what might
be considered fundamental flaws in ideal-MHD [16],
namely that ideal-MHD dynamical evolutions do not al-
low the topology of the magnetic field to “tear”. Despite
such flaws in ideal-MHD, the equation of force balance,
∇p = j×B, which this paper is primarily concerned with,
remains an excellent description of the macroscopic forces
that determine plasma equilibrium properties. Consider-
ing first the presumably simpler task, that of only seek-
ing static solutions, and ignoring the more-complicated
questions regarding ideal dynamical evolution, the main
obstruction to computing mathematically self-consistent
solutions to ∇p = j × B with nested flux surfaces and
smooth pressure profiles was that well-defined solutions
had not, until quite recently, been discovered. There
is, surprisingly, a class of ideal-MHD equilibria with
nested magnetic surfaces and arbitrary pressure profiles
that eliminates both the infinite currents and the non-
analyticity.

In recent work [17] we, for the first time, computed
the 1/x and δ-function singular current-densities in 3D
equilibria; and we realized that self-consistent solutions
demand locally-infinite shear at the resonant surfaces.
We then [8] introduced a new class of solution that ad-
mits additional δ-function current-densities that produce
finite sheet currents, with a commensurate discontinuity

in the rotational-transform.

A. Illustration in cylindrical geometry

For illustration and verification, we consider the linear,
ideal response to a resonant boundary perturbation in
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cylindrical geometry, with “major” radius R and minor
radius a. (Note, as mentioned above, we do not explicitly
follow the ideal dynamical response, but instead simply
solve ∇p = j × B with the perturbed boundary, i.e. we
seek the static solution.) The cylindrically symmetric
solution to ∇p = j × B satisfies

dp

dr
+

1

2

d

dr

[

B2

z

(

1 + ι-2
r2

R2

)]

+
rι-2B2

z

R2
= 0, (7)

where ι- ≡ RBθ/rBz, and is uniquely determined by the
value of the axial field at the origin, e.g. Bz(0) = 1,
by an arbitrary pressure profile, p(r), and a rotational-
transform profile, ι-(r). This equation may be cast as an
ordinary differential equation for Bz, and can be inte-
grated from r = 0 to r = a.

In cylindrical geometry there is no coupling, to low-
est order, between incommensurate perturbations; and
we may for simplicity of illustration imagine that there
is a single resonant surface of concern. (In a fully three-
dimensional configuration, all rational surfaces within the
equilibrium will potentially create problems.) We there-
fore choose a rotational-transform profile

ι-(r) =

{

ι-0 − ι-1(r/a)
2 + ∆ι-/2, for r < rs,

ι-0 − ι-1(r/a)
2 − ∆ι-/2, for r > rs,

(8)

with ι-0 and ι-1 chosen so that ι-(r) jumps across the ra-
tional ι-s ≡ n/m, namely ι-(rs) = ι-s±∆ι-/2. The pressure
can be an arbitrary smooth function, e.g.

p(r) = p0[1 − 2(r/a)2 + (r/a)4], (9)

and for later reference we define β ≡ 2p(0)/B2

z (0).
In cylindrical geometry, the linearized equation,

L0[ξ] = 0, reduces to Newcomb’s equation [18],

d

dr

(

f
dξ

dr

)

− gξ = 0, (10)

where ξr ≡ ξ(r) cos (mθ − nζ), and f and g are deter-
mined by the equilibrium [8]. For ∆ι- = 0, Newcomb’s
equation is singular where ι-(rs) = n/m, because there is
a order-two zero in f(r) and an order-one zero in g(r).
For ∆ι- 6= 0, the singularity is removed; and the equilib-
rium equations comprise an analytic function of the 3D
boundary and the perturbation expansion is valid.

Fig.1 shows the result of numerical integration of
Eq. (10), with different values of p0 and for ∆ι- = 10−3.
The linear radial displacement is continuous and smooth
provided ∆ι- 6= 0, and the condition |dξ/dψ| < 1 is satis-
fied if ∆ι- > ∆ι-min, which can be estimated theoretically
[8]. Even for a small, local change in the transform pro-
file the global solution is significantly different and the
displacement penetrates inside the resonant surface and
into the origin. In fact, for non-zero pressure, the pertur-
bation to the displacement inside the resonant surface is
magnified, extremely so as ideal-stability limits are ap-
proached. To quantify the amplification and penetration
of the perturbation, we define

Armp ≡ ξs/ξa, (11)

Prmp ≡ 1 − r∗/rs, (12)

where r∗ is the radius at which ξ(R∗) = ξs/e. In Fig.2
and Fig.3 we show these quantities as a function of β.
These figures show that as the equilibrium approaches
the Suydam limit for interchange stability, given by

DS =

(

2p′ι-2

rB2
z ι-

′2

)

s

<
1

4
, (13)

there is a fantastic increase in both the amplification and
penetration of the resonant magnetic perturbation.

B. Verification of a nonlinear equilibrium code

Removing the singularity associated with the rational
surface (achieved by allowing for a sheet current that
results in a discontinuous rotational-transform) means
that ideal-MHD equilibria become analytic functions of
the three-dimensional boundary, and this in turn allows
nonlinear 3D ideal-MHD equilibrium codes to be verified
against the linear codes. Presently, the widely-used, 3D,
nonlinear ideal-MHD equilibrium codes VMEC [19] and
NSTAB [20] are restricted to work with smooth functions
and cannot, formally, compute equilibria with discontin-
uous rotational-transform (though, finite radial resolu-
tion seems to imply an ‘effective’ discontinuity [21]). The
SPEC [11] code does allow for discontinuities. In Fig.4,
we compare the linear plasma displacement computed
using SPEC to analytic solution, with excellent agree-
ment. Futhermore, fully nonlinear SPEC solutions were
compared to the linear solutions [8], obtaining the as-
expected agreement.

FIG. 1: Solutions for the perturbed displacement for β = 0%
(lower curve) to β = 1% (upper curve); and for ∆ι- = 10−3.
(Reproduced from [9].)
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FIG. 2: Ampflication of the perturbation on the resonant
surface as a function of β, for ∆ι- = 0.005 (circles) and ∆ι- =
0.001 (stars). The vertical dashed line indicates where the
Suydam condition is not satisfied. (Reproduced from [9].).
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