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Importance of ideal-MHD. Three-dimensional (3D), ideal-MHD equilibria, as de-
scribed by ∇p = j × B, are fundamental for understanding the behavior of magnetically-
confined plasmas. Edge-localized modes (ELMs), an important concern for ITER, are
widely believed to be ideal, peeling-ballooning modes; and a ‘hot-topic’ of current re-
search is to discover how ELMs may be suppressed by resonant magnetic perturbations
(RMPs). The plasma response to 3D perturbations is routinely determined perturba-
tively using codes such as IPEC, the Ideal, Perturbed Equilibrium Code [Phys. Plasmas,
14:052110, 2007]. However, there are two fundamental difficulties that are frequently
over-looked: the existence of infinite currents near resonant surfaces, and that ideal-MHD
equilibria are not analytic functions of the 3D boundary.

Unphysical, pressure-driven currents. The infinite currents arise from charge
conservation, ∇ · j = 0, in equilibria with smooth profiles. Wherever there are pressure-
driven, perpendicular current-densities, j⊥ = B ×∇p/B2, there must also be parallel
current-densities that satisfy B · ∇u = −∇ · j⊥, where j ≡ uB + j⊥. The solution for each
Fourier harmonic in straight-field line coordinates is um,n = i(

√
g∇· j⊥)m,n/x+∆m,n δ(x),

where x ≡ ι- − n/m. MHD is a macroscopic model of plasma dynamics with no intrinsic
length scale; and the δ-function density is just a mathematical representation of localized
currents. Singularities in the current-density are allowed, but the total current,

∫
j · ds,

passing through each and every surface must be finite for a physically-acceptable equilib-
rium. The net current resulting from the resonant δ-function density between adjacent
flux-surfaces, e.g. x = −ǫ and x = +ǫ as ǫ → 0, actually integrates to zero; but the
so-called Pfirsch-Schlüter current resulting from the resonant 1/x current-density passing
through x = ǫ and x = δ, where 0 < ǫ < δ, and θ = 0 and θ = π/m is proportional
to

∫ δ
ǫ 1/x dx, which approaches infinity as ǫ → 0. This is not physical: the ideal-MHD

equilibrium model, with nested flux-surfaces, cannot admit pressure gradients in a small
neighborhood of each rational surface. Because the rational surfaces are dense, this means
that there can be no pressure at all, if the pressure is smooth; or the pressure must be
fractal [Grad, Phys. Fluids, 10:137, 1967] and not amenable to standard numerical dis-
cretization; or the pressure must be discontinuous, as is assumed in the Stepped Pressure
Equilibrium Code (SPEC) [Phys. Plasmas, 19:112502, 2012].

Breakdown of perturbation theory. The non-analyticity is encountered when
computing the ‘linear’ plasma displacement, ξ, given by L0[ξ] ≡ ∇δp−δj×B−j×δB = 0.
The operator, L0[ξ], is singular. To match a finite displacement at the boundary, and
to ensure that magnetic islands do not form, the solution for ξ is discontinuous at each
resonant surface. This, however, is inconsistent with nested flux-surfaces. The breakdown
of perturbation theory was known to Rosenbluth et al. [Phys. Fluids, 16:1894, 1973], who
wrote “we must abandon the perturbation theory approach” when computing ideal-MHD
equilibria in 3D.

A new class of self-consistent solutions. These difficulties are not fundamental
flaws in ideal-MHD, which remains perhaps the most successful, relevant yet simplest
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Figure 1: Comparison of the linear solution
and the SPEC solution for a perturbed cylin-
drical equilibrium, with ∆ι- > ∆ι-min, and for
increasing pressure. The RMP penetrates past
the resonant surface at r = a/2, and is spec-
tacularly amplified by plasma pressure. The
nonlinear SPEC solution converges to the lin-
ear solution with error ∼ O(ǫ2), as it should
when the equations and solution are analytic.

model of plasma dynamics. It is just that, until recently, self-consistent solutions to
the ideal-MHD equilibrium equation for arbitrary 3D geometry had not been discovered.
There is, surprisingly, a class of solutions that eliminates both the infinite currents and the
non-analyticity, even for smooth pressure profiles. Recently, Loizu et al. [Phys. Plasmas,
22:022501, 2015], for the first time, computed the 1/x and δ-function current-densities in
3D equilibria. Self-consistent solutions demand locally-infinite shear at the resonant sur-
faces. We then introduced [Phys. Plasmas, 22:090704, 2015] a new class of solutions that
admit additional δ-function current-densities that do produce finite net currents between
adjacent flux-surfaces, with a commensurate discontinuity in the rotational-transform that
removes the singularities. Most importantly, we will present new predictions that are in
sharp contrast to previous understanding, with direct implications for the penetration of
RMPs in tokamaks: in ideal-MHD, a resonant perturbation penetrates past the rational
surface and into the core of the plasma; and the perturbation is magnified by pressure
inside the resonant surface, increasingly so as stability limits are approached!

Verification with analytic solution. For illustration and verification, we consider
the linear and nonlinear, ideal plasma response to an RMP in cylindrical geometry. The
equilibrium is defined by an arbitrary, smooth pressure profile, p(r), and a rotational-
transform profile, ι-(r) = ι-0(r) + ∆ι-/2 for r < rs and ι-(r) = ι-0(r) − ∆ι-/2 for r > rs, with
ι-0(r) chosen so that ι-(r) jumps across the rational ι-s ≡ n/m, namely ι-(rs) = ι-s±∆ι-/2. The
linearized equation, L0[ξ] = 0, reduces to Newcomb’s equation, d(f dξ/dr)/dr − g ξ = 0,
where ξ is the radial component of the resonant plasma displacement, and f(r) and g(r)
are determined by the equilibrium. For ∆ι- = 0, Newcomb’s equation is singular where
ι-(rs) = n/m. For ∆ι- > 0 the singularity is removed; and for ∆ι- > ∆ι-min (the minimum
required to ensure that the perturbed flux-surfaces do not overlap) the perturbation ex-
pansion accurately approximates the true nonlinear solution. The value of ∆ι-min may be
estimated analytically. For continuous transform, the linear solution demands complete
‘shielding’ (and non-physical overlapping flux surfaces). For ∆ι- > 0, the self-consistent
displacement penetrates into the origin, as shown in Fig.1.

Benchmarking linear & nonlinear codes. Our solution has resolved a confusion
in efforts [Nucl. Fus., 55:063026, 2015] to benchmark the linearly-perturbed solutions
with the nonlinear solutions provided by the 3D equilibrium codes VMEC and NSTAB,
both of which enforce nested flux-surfaces; whereas, for ∆ι- = 0, the ‘linear’ solution
gives overlapping flux-surfaces. Of course these solutions will disagree near the rational
surfaces! For ∆ι- > ∆ι-min, the perturbation expansion converges: the linear and nonlinear
codes should agree. However, VMEC and NSTAB are restricted to work with smooth
profiles and cannot formally compute equilibria with discontinuous rotational-transform.
SPEC does allow for discontinuities, and Fig.1 shows excellent agreement between SPEC
and the linear approximation.
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