

CULHAM CENTRE FUSION ENERGY

Fluid Models for burning and 3D plasmas: complementing the kinetic paradigm

M.J. Hole¹, Z. Qu¹, M. Fitzgerald^{1,2}, B. Layden¹, G. Bowden¹, R. L. Dewar¹, A. Könies³

3. IPP

Max-Planck-Institut für Plasmaphysik

A1. Equilibrium with flow, anisotropy

- Inclusion of anisotropy and flow in equilibrium MHD equations [R. Iacono, et al Phys. Fluids B 2 (8). 1990]
- Implemented in EFIT TENSOR for equilibrium reconstruction [Fitzgerald, Appel, Hole, Nucl. Fusion 53 (2013) 113040]
- Implemented in HELENA-ATF for stability studies [Qu, Fitzgerald, Hole, PPCF 56 (2014) 075007]

A2. Anisotropy on MAST: #29221

B1. Zoo of GAMS

		Conventional GAMs	ICRH driven (E?)GAMs	NBI driven EGAMs
	Frequency	$\sim \sqrt{\frac{7}{4}T_i + T_e + O(\frac{1}{q^2})}$	Same as conventional GAMs	Determined by fast ions (can be half of the thermal GAM)
	Drive	Nonlinear interaction with turbulence	ICRH trapped fast ions, positive dF/dE	NBI passing fast ions, positive dF/dE
	Localization	Local, edge	Core	Global
	Observation	Nearly all machines	JET	DIII–D, ASDEX–U, LHD, HL–2A

B2. EGAMs

Complex frequency

Damped

EGAM

• Existing hybrid theory: fluid bulk, kinetic fast ions. Driven unstable by inverse Landau damping [Fu, G.Y. PRL. 101, 185002 (2008).]

B5.Reactive/dissipative EGAMs

Reactive (energy conserved) EGAM [Qu PRL 2016]
Dissipative (energy not conserved, e.g. wave-particle driven) EGAMs [Fu PRL 2008]

n=1 incompressible continuum

- Girardo PoP 2014 find unstable mode emerges from Landau poles. Excited Landau poles?
- We find unstable mode exist even when beam is cold (small thermal spread), and wave drive is negligible.
- Fluid treatment valid for cold fast ions.
- Could fluid theory describe the mode?
 → Simpler, better understanding

[Zarzoso, D. *et al. Nucl. Fusion* **54,** 103006 (2014).] [Girardo, J.-B. *et al. Phys. Plasmas* **21,** 092507 (2014).]

B3. Fluid model of EGAM

- [Qu, Z.S. et al. Phys. Rev. Lett. 116, 095004 (2016).]
- Large aspect ratio, circular cross section : (r, θ, φ)
- Electrostatic perturbations ($\tilde{B} = 0$)

Electrons	Thermal ions	Fast ions
No flow	No flow	$V_0 = V_{fast} b$
$n_e = n_i + n_{fast}$	n_i	n _{fast}
T _e	T_i	$P_{\parallel fast}, P_{\perp fast}$

• Thermal/Fast ion response : the double-adiabatic (CGL) closure

$$\frac{dp_{||s}}{dt} = -p_{||s}\nabla \cdot \mathbf{v_s} - 2p_{||s}\mathbf{b} \cdot (\mathbf{b} \cdot \nabla \mathbf{v_s})$$
$$\frac{dp_{\perp s}}{dp_{\perp s}} = -2p_{\perp}\nabla \cdot \mathbf{v_s} + p_{\perp}\mathbf{b} \cdot (\mathbf{b} \cdot \nabla \mathbf{v_s})$$

B6. Application to EGAM in DIII-D

[Nazikian, R. et al. Plasma. Phys. Rev. Lett. 101, 185001 (2008).]

A3. Wave-particle Stability

Rigorous approach: implement anisotropic equations of motion
 in HAGIS [Pinches et al., Comput. Phys. Comm. (1998)]

Approximate approach:

- 1. Compute anisotropic equilibrium with HELENA+ATF.
- 2. Calculate $\langle J_{\phi} \rangle$ and $\langle p^* \rangle$, input as "isotropic" into HELENA.
- 3. Rescale total current s.t. $q(\psi)$ matches HELENA+ATF.
- Calculate passing (and trapped) orbits for MAST #29221 for fully anisotropic and remapped equilibria.
- Similar guiding-centre trajectories, < 1% difference in poloidal orbit frequency ⇒ approach will be a good approximation.

- $dt = 2p_{\perp s} \cdot \mathbf{v}_{s} \cdot p_{\perp s} \cdot \mathbf{v}_{s}$ Why CGL?
 - It can give the right thermal GAM frequency $\sim \sqrt{\frac{7}{4}T_i + T_e + O(\frac{1}{a^2})}$
 - Heat flow is not important in our case (mode frequency far from thermal frequency of thermal/fast ions)
- Electrons : isothermal response to the field
- The momentum equation for thermal/fast ions, electrons

$$\begin{split} m_s n_s \left(\frac{\partial \tilde{V}_s}{\partial t} + \frac{\tilde{n}_s}{n_s} V_s \cdot \nabla V_s + V_s \cdot \nabla \tilde{V}_s + \tilde{V}_s \cdot \nabla V_s \right) \\ = n_s e(-\nabla \tilde{\Phi} + \tilde{V}_s \times B) - \nabla \cdot \tilde{\overline{P}}_s \end{split}$$

- Add up species and use quasi-neutrality: $\nabla \cdot J = 0$
 - Keep all terms (finite orbit width): Global dispersion equation

– Drop \tilde{V}_{dm} (zero orbit width): Local dispersion equation

B4. Local dispersion relationship

- Instant turn on (~1ms) of the mode, much faster than slowing down time (~a few 10ms).
- $F(E,\Lambda) = \delta(E E_0)\delta(\Lambda \Lambda_0)$
- For DIII-D conditions

 $-E_0 = 75 keV, \Lambda_0 = 0.5, q = 4, T_e = 1.2T_i = 1.2 keV$

C1. 3D Continuum Damping

 Commonly calculated based on limit of vanishing resistive / kinetic effects

Nonlinear Wave Evolution

Growth rate 35% larger in anisotropic case : Resonance maps show larger anisotropic spatial drive

Saturation amplitude 22% larger in isotropic case. : Isotropic saturation amplitude larger due to bounce frequency

Differences in isotropic and anisotropic equilibrium and mode structure \Rightarrow differences in resonant regions, growth rates and saturation amplitudes.

Fast ion response

 ω_h : fast ion transit frequency

For a bump on tail distribution with small beam thermal spread
 Doppler shift of the wave in the static frame of fast ions

 $G(\omega) \approx \frac{\frac{3}{2}\omega_b^2 q^2}{\omega^2 - \omega_b^2} + \frac{\omega_b^4 q^2}{(\omega^2 - \omega_b^2)^2}$

• Three roots are presented, depends on the relationship between ω_b , ω_{GAM} , q and fast ion density.

$$\omega_b < \omega_{GAM}$$
: $\omega_b = 0.58 \omega_{GAM}$, $q = 4$, $T_{fast}/T_i = 0.25$

But no wave-particle interaction in fluid theory ⇒ Drive does *not* come from wave-particle interaction

- Demonstrated perturbative treatment does not agree with the accepted result in the limit of small damping. [Bowden, Könies, Hole, Gorelenkov, Dennis, PoP, 21, 052508 (2014)]
- Developed singular finite element technique to compute continuum damping.

[Bowden, M. J. Hole, PoP, 22, 022116 (2015)]

Implementation of complex contour technique into MHD code CKA. First calculation of continuum damping in 3D for realistic configurations.

[Bowden, Hole, Könies, PoP, 22, 092114 (2015)]

Complex contour example: continuum damping of m=10, n=-13 NGAE due to resonance with m=8, n=-10 continuum branch

Convergence of damping to $\gamma/\omega \approx 5.8 \times 10^{-3}$ on 100 × 60 ×20 mesh

Acknowledgements:

• ARC grants FT0991899, DP1093797, DP140100790

