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A1. Equilibrium with flow, anisotropy  
• Inclusion of anisotropy and flow in equilibrium MHD equations 

[R. Iacono, et al Phys. Fluids B 2 (8). 1990] 

A2. Anisotropy on MAST: #29221 
• 1.6MW NB heating, Ip = 0.9MA, βn~3 

possible TAE  
Magnetics 
n=1 

Tearing 
modes 

1. 

2. 3. 

• Implemented in EFIT TENSOR for equilibrium reconstruction 
[Fitzgerald, Appel, Hole, Nucl. Fusion 53 (2013) 113040]  

• Implemented in HELENA-ATF for stability studies   
[Qu, Fitzgerald, Hole, PPCF 56 (2014) 075007]  

isotropic 
anisotropic 

n=1 incompressible continuum 

Computed with CSMISH 
(isotropic) 

[Qu Z.S., Hole M.J. and Fitzgerald M. 
2015 PPCF 57 095005] 

Computed with CSMISH-A 
(anisotropic) 

Flux surfaces 

pressure q profile 

n = 1 global TAE radial structure 

isotropic anisotropic 

A3. Wave-particle Stability 

B1. Zoo of GAMS 
Conventional GAMs ICRH driven 

(E?)GAMs 
NBI driven 
EGAMs 

Frequency 
~ 7

4
𝑇𝑇𝑖𝑖 + 𝑇𝑇𝑒𝑒 + 𝑂𝑂( 1

𝑞𝑞2
)  

Same as 
conventional 
GAMs 

Determined by fast ions 
(can be half of the 
thermal GAM) 

Drive Nonlinear interaction 
with turbulence 

ICRH trapped 
fast ions, 
positive dF/dE 

NBI passing 
fast ions, 
positive dF/dE 

Localization Local, edge Core Global 

Observation Nearly all machines JET DIII-D, ASDEX-U, LHD, 
HL-2A 

B2. EGAMs 
• Existing hybrid theory: fluid bulk, kinetic fast ions.  Driven 

unstable by inverse Landau damping  [Fu, G.Y. PRL. 101, 185002 (2008).] 

• Girardo PoP 2014 find unstable mode 
emerges from Landau poles. Excited 
Landau poles? 

• We find unstable mode exist even 
when beam is cold (small thermal 
spread), and wave drive is negligible.  

• Fluid treatment valid for cold fast ions. 
• Could fluid theory describe the mode? 
→ Simpler, better understanding 
[Zarzoso, D. et al.  Nucl. Fusion 54, 103006 (2014).] 
[Girardo, J.-B. et al. Phys. Plasmas 21, 092507 (2014).] 
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B3. Fluid model of EGAM 

Electrons Thermal ions Fast ions 
No flow 

𝑛𝑛𝑒𝑒 = 𝑛𝑛𝑖𝑖 +𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
𝑇𝑇𝑒𝑒 

No flow 
𝑛𝑛𝑖𝑖 
𝑇𝑇𝑖𝑖 

𝑽𝑽𝟎𝟎 = 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝒃𝒃 
𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑃𝑃∥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,𝑃𝑃⊥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

• Large aspect ratio, circular cross section : 𝑟𝑟,𝜃𝜃,𝜑𝜑  
• Electrostatic perturbations (𝑩𝑩� = 0) 
 

 [Qu, Z.S. et al. Phys. Rev. Lett. 116, 095004 (2016).] 

• Thermal/Fast ion response : the double-adiabatic (CGL) closure 
 
 

 
Why CGL? 

− It can give the right thermal GAM frequency ~ 7
4
𝑇𝑇𝑖𝑖 + 𝑇𝑇𝑒𝑒 + 𝑂𝑂( 1

𝑞𝑞2
)   

−Heat flow is not important in our case (mode frequency far from thermal 
frequency of thermal/fast ions) 

• Electrons : isothermal response to the field 

𝑑𝑑𝑝𝑝||𝑓𝑓

𝑑𝑑𝑑𝑑
= −𝑝𝑝||𝑓𝑓𝛻𝛻 ∙ 𝐯𝐯𝐬𝐬 − 2𝑝𝑝||𝑓𝑓𝐛𝐛 ∙ 𝐛𝐛 ∙ 𝛻𝛻𝐯𝐯𝐬𝐬  

𝑑𝑑𝑝𝑝⊥𝑓𝑓
𝑑𝑑𝑑𝑑

= −2𝑝𝑝⊥𝑓𝑓𝛻𝛻 ∙ 𝐯𝐯𝐬𝐬 + 𝑝𝑝⊥𝑓𝑓𝐛𝐛 ∙ 𝐛𝐛 ∙ 𝛻𝛻𝐯𝐯𝐬𝐬  

• The momentum equation for thermal/fast ions, electrons 
 

 
 
 
• Add up species and use quasi-neutrality: 𝛻𝛻 ⋅ 𝐽𝐽 = 0 

–  Keep all terms (finite orbit width): Global dispersion equation 

𝑉𝑉� = 𝑉𝑉𝐸𝐸�
𝐵𝐵0
𝐵𝐵
𝜃𝜃� + � 𝑉𝑉�∥𝑚𝑚𝒃𝒃 + 𝑉𝑉�𝑑𝑑𝑚𝑚𝒃𝒃 × 𝜿𝜿 𝑒𝑒𝑖𝑖𝑚𝑚𝑖𝑖

𝑚𝑚=2

𝑚𝑚=−2

 

𝐸𝐸 × 𝐵𝐵 
drift 

Parallel 
velocity 

Magnetic drift velocity 

Perturbed 
velocity 

‒ Drop 𝑉𝑉�𝑑𝑑𝑚𝑚 (zero orbit width): Local dispersion equation 

B4. Local dispersion relationship 

Bulk response 
(thermal GAM) Fast ion response 

𝛼𝛼 = 𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓/𝑛𝑛𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡 

𝜔𝜔𝑏𝑏: fast ion transit frequency 

• For a bump on tail distribution with small beam thermal spread 
‒ Doppler shift of the wave in the static frame of fast ions 

• Three roots are presented, depends on the relationship between 
𝜔𝜔𝑏𝑏, 𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺, q and fast ion density. 

𝜔𝜔𝑏𝑏 < 𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺 :  𝜔𝜔𝑏𝑏= 0.58𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺, 𝑞𝑞 = 4, 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓/𝑇𝑇𝑖𝑖 = 0.25 
 

Unstable mode 

Fluid Model 

zero turn-on 
threshold in α 
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𝜔𝜔𝑏𝑏 > 𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺 :  𝜔𝜔𝑏𝑏= 1.76𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺, 𝑞𝑞 = 2, 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓/𝑇𝑇𝑖𝑖 = 1 
 

Negative energy wave 
𝜕𝜕𝜔𝜔𝜕𝜕 𝜔𝜔
𝜕𝜕𝜔𝜔

< 0 

Positive energy wave 
𝜕𝜕𝜔𝜔𝜕𝜕 𝜔𝜔
𝜕𝜕𝜔𝜔

> 0 

Coupled positive/negative energy 
wave: Energy transferred from 

negative wave to positive wave, 
both wave amplitude grow 

Similar to two 
stream instabilities 

bifurcation 

B5.Reactive/dissipative EGAMs 

•   

To be reactive: 

Transit frequency 

D
is

tri
bu

tio
n 

Fu
nc

tio
n 

𝑇𝑇𝑖𝑖 𝑇𝑇𝑓𝑓 

𝑇𝑇𝑓𝑓 

EGAM 
frequency reactive 

dissipative 

• Reactive (energy conserved) EGAM [Qu PRL 2016] 
• Dissipative (energy not conserved, e.g. wave-particle driven) 

EGAMs [Fu PRL 2008] 

Reactive EGAM 
Two-stream instabilities 
 

Dissipative EGAM 
Bump-on tail instabilities 

1/2 thermal GAM frequency 

Neutron Loss 

Chirping 

Counter Beam Global Mode 

[ Nazikian, R. et al. Plasma. Phys. Rev. Lett. 101, 185001 (2008).] 
 

B6. Application to EGAM in DIII-D 

• Instant turn on (~1ms) of the mode, much  faster than 
slowing down time (~a few 10ms). 

• 𝐹𝐹 𝐸𝐸,Λ = 𝛿𝛿 𝐸𝐸 − 𝐸𝐸0 𝛿𝛿(Λ − Λ0)  
• For DIII-D conditions 

– 𝐸𝐸0 = 75𝑘𝑘𝑒𝑒𝑉𝑉,Λ0 = 0.5, 𝑞𝑞 = 4, 𝑇𝑇𝑒𝑒 = 1.2𝑇𝑇𝑖𝑖 = 1.2𝑘𝑘𝑒𝑒𝑉𝑉 

Observed DIIID 
frequency range 

No turn-on 
threshold 

C1. 3D Continuum Damping 
• Commonly calculated based on limit of vanishing resistive / 

kinetic effects 
• Demonstrated perturbative treatment  does not agree with 

the accepted result in the limit of small damping. 
[Bowden, Könies, Hole, Gorelenkov, Dennis,  PoP, 21, 052508 (2014)] 

• Developed singular finite element technique to compute 
continuum damping. 
[Bowden, M. J. Hole, PoP, 22, 022116 (2015)] 

• Implementation of complex contour technique into MHD 
code CKA. First calculation of continuum damping in 
3D for realistic configurations.  
[Bowden, Hole, Könies, PoP, 22, 092114 (2015)] 
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Complex contour 
example: continuum 
damping of m=10, n=-13 
NGAE due to resonance 
with m=8, n=-10 
continuum branch 
 
Convergence of damping 
to γ/ω ≈5.8×10-3 on 100 × 
60 ×20 mesh 

• Rigorous approach: implement anisotropic equations of motion 
in HAGIS [Pinches et al., Comput. Phys. Comm. (1998)] 

Approximate approach: 
1. Compute anisotropic equilibrium with HELENA+ATF. 
2. Calculate ⟨Jϕ⟩ and ⟨p*⟩, input as “isotropic” into HELENA. 
3. Rescale total current s.t. q(ψ ) matches HELENA+ATF. 
• Calculate passing (and trapped) orbits for MAST #29221 for 

fully anisotropic and remapped equilibria. 
• Similar guiding-centre trajectories, < 1% difference in poloidal 

orbit frequency ⇒ approach will be a good approximation. 

𝑓𝑓 𝐸𝐸, 𝑠𝑠,Λ = 𝑓𝑓 𝐸𝐸 𝑓𝑓 𝑠𝑠 𝑓𝑓(Λ) Distribution function:  

Slowing down 

Guassian δ(Λ) 
nf  / n0 = 14.5% 

Growth rate 35% larger in 
anisotropic case : Resonance 
maps show larger anisotropic 
spatial drive 

Saturation amplitude 22% 
larger in isotropic case. : 
Isotropic saturation amplitude 
larger due to bounce frequency 

Nonlinear Wave Evolution 

MISHKA-A 

• Differences in isotropic and anisotropic equilibrium and 
mode structure ⇒  differences in resonant regions, 
growth rates and saturation amplitudes. 

But no wave-particle interaction in fluid theory 
⇒ Drive does not come from wave-particle interaction 

Fast ion orbits 
calculated using 
CUEBIT for MAST 
#29221 for ions with E 
= 21keV and =0.4 

fully anisotropic remapped 
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