Australian

.  National
saezy University

Spectrum of multi-region-relaxed magneto-nhydrodynamic
modes in slab geometry

Putting the D in MEKMHD

a prescription for all that ails ideal MHD!
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If it ain’t broke, why fix it?
* |deal MHD is overconstrained
— No heat transport along field lines

— No reconnection so islands or chaos cannot form
— Thus inapplicable to hot and 3D plasmas!

* Fix by removing the bad constraints and keeping
the good, doing more with less!

Allowed variations Resulting minima

Relaxed-MHD
superset: wider
class of variations

Constraint sets

ed MHD: finit
ubset of the ideal-
MHD invariants

Relaxed-MHD
equilibria

\

deal MHD:
. ‘restrcted class of
variatons allowed

Ideal MHD: infinite
continuum of
constrants

Kruskal-Kulsrud
equilibria — include
laxed MHD state
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MRxMHD: M stands for Multi-region (aka waterbag)

Rx stands for Relaxed; ..D stands for Dynamics
| Fundamental postulates of new
general reformulation of MHD:
4 31 transport interfaces, J;or [, or
dQ);; (e.g. nested tori or island
separatrices), that act like sheets of
ideal-MHD plasma
1 Plasma relaxes (in some general-
== |//[o> ized Taylor sense) in regions P; (or
| “&}ﬁj‘}%&“‘;ﬁ R Q) bounded by the interfaces
= Q Only a subset of ideal-MHD
iInvariants apply
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SPEC (currently) uses MRxMHS, not MRxMHD:

MRxMHS = Multi-region Relaxed MagnetohydroStatics (i.e. equilibrium theory)

o Tay|0r relaxation energy principle Ref. Stuart Hudson’s talk yesterday

* constant pressure in each region
MRxMHD = Multi-region Relaxed MagnetohydroDynamics

New approach:: ©®use Hamilton’s Principle — stationarity of
time-integrated Lagrangian

2 constant temperature in each region

2 supports sound waves within relaxation regions as well as
radially compressible and Alfvén modes + tearing

o can treat development of resonant current sheets

o> can add equilibrium flow to SPEC and will be basis for a
new time-evolution waterbag code
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MRxMHD Lagrangian is kinetic energy minus
MHD potential energy + constraint terms:

« MHD Lagrangian density in region i

pven _ 0P B
2 v—1 2po

« Constrained Lagrangian in region i

Q;

* Helicity and entropy macroscopic invariants

K, = / dV S; = / P In (lﬁl£> dV
2110 0 71 p7
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In varylng action, p is constrained holonomically

to the displacement & of each fluid element:
* Mass conserved microscopically, i.e. pointwise

op = —V-(p§) in
* Helicity and entropy constrained macroscopically,
throughout Q,, using Lagrange multipliers y; and t,
while p and A are free fields

 Including vacuum field energy, total Lagrangian is
B-B aVv

b= ZL _/QV 210

« Setting variation of action to 0 gives EL equations:
5/Ldt =0
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Equations within Q,

« Mass conservation (microscopic constraint)

dp
5 = V(o)

+ Op 2 Isothermal equation of state
p=7p (NB. 7 =0C2%)
* OA © Beltrami equation
VxB =pu;B (N.B. = jxB =0)
« { © Momentum equation (Euler fluid)

ov
P (E + V-VV) — —Vp
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Equations on interface F,-,j

« ¢ 2 Force balance

B2
p+—ﬂ =0
H Mo ll; ;

e Surface constraints
IlfL"B =0 on an

n;- [vl];, ;=0 ondQ;

« Complete set of equations, consistent
because derived from single scalar function L

8
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Proving the MRxXMHD pudding:

* Q1) What is the MRxMHD spectrum and
what are the effects of field-line curvature
and equilibrium mass flow on stability?

* Q2) When are the current sheets
topologically stable towards internal
plasmoid formation (reconnection)?

« Q3) When do unstable modes saturate at
a low level or develop nonlinearly into
explosive events?
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What happens in static limit?
* 0,—> 02> V.(pv)=0 v-Vv=-7rVinp

2> only solutions valid for any flowline configuration,
from nested surfaces to arbitrarily chaotic, are

v? v?
p = po; exXp | — > P = poi eXp | —
27',,; 27',,;

(N.B. incompressible in limit v/Cs — 0) and
(5,
VXV =aqpexp|— \%

27;
Almost isomorphous to B equation: should be
iImplementable in SPEC. Derivable variationally?

10
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Slow limit? Switch-on slawb boundary ripple:*

0.0001
0.00005 ' 2.0x10°8
%  0.0000 1.5x1078
o000 NI\
-1.0 -05 00 05 1.0 5.0x10

y 0

2-region MRXMHD Hahm-Kulsrud model

Ripple amplitude:
« =0.003

Current density
exhibits sign
reversal

. mirror-image ripple

top and bottom excites modulated current sheet at x =0

W
0.0001 S :
0.00005 % v 4.x107°
%< 0.0000 3.x1078
~0.00005 2.x1078
~0.0001 N\ A -8
10 -05 00 05 1.0 1.x10
y 0

Larger ripple amplitude:
o = 0.005

No sign reversal so
half-islands
disappear

*From APS DPP 2014 poster
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Full t-dependence: linear modes in slab

B, a superposit" Wall —
of “Beltrami Vacuum /
waves” in Interface or X
Iasma( S O) flux surface ’
P H Plasma /
and X=0 —_— j Z
vacuum (u = 0) y

MRxMHD: sound waves in plasma (p, = const > 0, = > 0)
Results to be reported at ICPP, Kaoshiung, Taiwan 2016

MRXxMHS+: A = @w? with p, = 5(x-a) © no sound waves
Hole et al, Nucl Fusion 47, 746 (2007), etc
Alexis Tuen’s MSc thesis 2016
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Loading all mass on interfaces causes
problems:
A

30
20

10}

-10lL

« Growth rate goes to « when Newcomb node goes through
interface

« Growth rate zero if wall or k.B=0 is at interface 13
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Conclusion

* Action-based MRxMHD shows great
promise

— Very simple
— Includes reconnection and flow in natural way

We need to check physical reasonability of
predictions in simple models

* Need both to extend SPEC and build a
new time-evolution code
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