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Some abbreviations

MRxMHD:  M stands for Multi-region (aka waterbag); 

Rx stands for (Taylor) Relaxed; MH for Magneto-Hydro;  

D stands for Dynamics 
”2D” = possessing a continuous 
symmetry, giving integrable

magnetic field
e.g axisymmetric Tokamaks 

(without Resonant Magnetic 

Perturbations = RMPs):

“3D” = no continuous symmetry, 
allowing field-line chaos and 
islands
e.g. non-axisymmetric Stellarators

(without quasisymmetry?)



• Brief review of MRxMHD idea and realization in 
SPEC (Stepped-Pressure Equilibrium Code )

• New Dynamical MRxMHD: Force-free magnetic 
field ⇔ Euler fluid in each relaxation region

• Contrast 2 cases: Axisymmetric toroidal flow; 
Chaotic streamlines (extreme non-axisymmetry)

• Questions to address

• Preliminary numerical implementation

• Conclusion
3

Plan of talk
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q Within the sub-regions Ωi, use force-free 
magnetic fields, so no jXB force — field 
and fluid are decoupled

q Dual goals
Ø Numerical: well-posed “smart finite element” 

discretization for fast, convergent calculations 
Ø Theoretical: MHD model allowing islands, 

chaos & flow in 3D equilibria and dynamics

Aim: Simplest ideal-like MHD model that works in 3D
q Confinement is maintained by thin transport barriers 

(interfaces) Γi,j dividing the plasma into toroidal sub-regions Ωi

q Force balance across interfaces Γi,j allows stepped pressure 
(& flow) profiles

Multiregion MHD concept

Flexible geometry: Interfaces 
not necessarily simple tori –
may be separatrices of 
magnetic & fluid islands 
(“Kelvin’s cat’s eyes”)



SPEC reconstruction of DIIID RMP 
equilibrium using many interfaces 
constructed using highly irrational 
q using a Farey tree algorithm: 
Hudson et al PoP 2012
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MRxMHD implemented in SPEC 
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Stepped-Pressure 
(static) Equilibrium 
code (SPEC) has 
already 
demonstrated 
convergence, utility 
for data fitting, and 
physics interpret-
ation of helical axis 
bifurcations in RFX.

Challenge now is to 
include flow.
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qFull ideal-MHD constraints apply only within the interfaces Γi,j

qWithin the sub-regions Ωi relax nearly all the ideal-MHD 
constraints except for conservation of macroscopic magnetic 
helicity, entropy, and microscopic mass 

q Cross-helicity not constrained, so fluid and magnetic field 
couple only at interfaces, which are current/vortex sheets

Generalize Taylor-type minimum energy equilibrium approach 
by instead extremizing the MHD action (Hamilton’s Principle).  
Details in Dewar et al, J. Plasma Phys. 2015:

New MRxMHD theory



(NB Mass conservation built in:                   )
��

�t
= ��·(�v)

• δp� Isothermal equation of state

p = �i� (N.B. �i = C2
si)

• δA� Beltrami equation (simple!)

• ξ in Ω" � Momentum equation (Euler fluid)

�

�
�v
�t

+ v·�v
�

= ��p

��B = µiB (N.B. � j�B = 0)

Result:  Euler-Lagrange equations

• ξ on Γ",% � Force balance 
&'
()*

+ , |",% = 0
NB Centrifugal force balance does not appear explicitly — mediated by pressure

Problem:  Euler flow is not simple!
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Piecewise-constant vorticity ω ≡ ∇×v:
ω& = 2Ω&*+ ⟺ - = Ω&.e0 ⟹ ω&×v = −2Ω&3.e4= −∇503

2D: Steady axisymmetric toroidal flow

• Steady toroidal Euler flow momentum equation:

6×- + ∇
503
2 + ln ::;

= 0
• Gives Bernoulli equation −=>?

3 + ln
@
@A
= 0: in agreement 

with, e.g., McClements & Hole’s 2010 ideal MHD result �

• Ideal Ohm’s Law solvability condition for Φ: 
∇× v×B = Ω&. ∇ D B − E

4
FG>
F0 e0 = 0 ��

So rigid-body flow is compatible with ideal MHD for any axi-
symmetric B, including MRxMHD’s force-free Beltrami field



Static solution of Compressible Euler 
Fluid eqs. in arb. Ω (Sato & Dewar arxiv):

• Dot momentum equation                     
with         and integrate to give Bernoulli
equation
on each flow line. 

• Only solution valid for arbitrarily chaotic flow 
within Ω is (with suitable choice of global 
constant      )
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• Gives nonlinear Beltrami equation:

�v·�v = ����
v/�

v2/2 + � ln(�/�0) = const

�0

3D. “Relaxed” non-axisymmetric flow

� = �0 exp(�v2/2�)

��v = �0 exp(�v2/2�)v
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Problem: Incompatibility of solutions

• Relaxed (3D Beltrami) fluid solution: vorticity 
parallel to flow

• Rigid toroidal flow 2D solution: vorticity 
perpendicular to flow

• Toroidal kinetic energy terms in Bernoulli
equations have opposite signs in the two solns.

• Unlike rigid toroidal flow, relaxed fluid does 
not in general satisfy ideal Ohm’s Law 
solvability condition ∇× v×B = 0.

2D and 3D examples both satisfy Euler flow equations, but 
are very different:



Questions re 3-D flow equilibria

• Are there steady 3-D MRxMHD solutions that 
satisfy ∇× v×B = 0?

• Is there a better fluid relaxation theory based 
on quasi-2D (“shallow water”) inverse 
cascade theory?

• Does d’Alembert’s paradox 
(no drag) apply so non-trivial
steady stepped flows exist ?
• Or, do only time-dependent (e.g. oscillatory) 

solutions exist?
11

Wikipedia: D'Alembert's
paradox
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Case 3: 3D Stellarator test case (toroidal periodicity = 5, zero !)
No viscosity is used — We find steady converged solutions using free-slip 
boundary conditions with flow discontinuity at interface: it appears there is 
a d’Alembert’s paradox operating in our case

Field
Poincaré

Poloidal 
flow only
" # plot

Toroidal 
flow only
" # plot

Preliminary SPECF implementation 4
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Conclusion

• Have shown that MRxMHD is compatible with 
ideal MHD for axisymmetric toroidal flow equilibria

• Have found that the most general non-
axisymmetric “relaxed Euler flow” equilibria 
cannot reduce to the axisymmetric toroidal flow 
equilibria

• Have implemented a preliminary version of the 
SPEC code with flow (SPECF)

• Have enunciated some questions that need to be 
addressed (another is physics of the interfaces —
next talk)



THE END
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 The action-based formulation1 of Multiregion Relaxed MHD (MRxMHD) encompasses 
both steady-flow statics, and dynamics on a slower timescale than Taylor relaxation. We 
consider the case of a toroidal plasma laminated into multiple nested annular toroidal 
relaxation regions, separated by interfaces supporting current sheets. Unlike ideal MHD, 
Taylor relaxation allows reconnection at resonant surfaces to occur within these regions. 
However, the physical applicability of the model depends on the interfaces between them 
being ideal, i.e. stable against reconnection for times much longer than the relaxation 
timescale.  
 It has been postulated2 that plasma flow may stabilize such current sheets even if they 
occur on surfaces that resonate with boundary perturbations in 3D geometries such as 
stellarators, or tokamaks with resonant magnetic perturbation (RMP) coils. This motivates 
the extension, now under development, of the 3D-MRxMHD-based equilibrium code SPEC3 
to allow plasma flow with reasonably general flow profiles. However, it is not clear4 that 
stationary 3D states with other than rigid-rotation flow exist, motivating development of a 
3D MRxMHD initial value code to model oscillatory states and nonlinear instabilities. 
 The formulation of Ref. 1 describes the plasma in each region as an ideal Euler fluid, 
which is too general for practical purposes as it allows all the turbulent complexity of such 
a fluid. This motivates developing a Taylor-like relaxation model5 for fluids, based on 
minimizing total energy with constant mass, entropy and fluid helicity (or, equivalently, 
minimizing fluid helicity at constant mass, entropy and energy). This leads to a compressible 
Beltrami equation, ∇ × # = %&exp	(−-./2τ)#, where %& and 3 are constant in each region, 
3 being the square of the isothermal sound speed in that region. The simplest case is %& = 0, 
i.e. the flow has zero vorticity, but, because our relaxation regions are not simply connected, 
non-trivial rotation profiles can still be treated. 
 
References:  

1. R.L. Dewar,  et al., J. Plasma Phys., 81, 515810604-1–22, (2015). 
2. R.L. Dewar, S.R. Hudson et al., Phys. Plasmas, 24, 042507-1–18, (2017). 
3. S.R. Hudson, R.L. Dewar et al., Phys. Plasmas 19, 112502-1–18, (2012). 
4. G.R. Dennis, S.R. Hudson, R.L. Dewar and M.J. Hole,  Phys. Plasmas 19, 042501-

1–9, (2014). 
5. N. Sato and R.L. Dewar, Relaxation of Compressible Euler Flow in a Toroidal 

Domain https://arxiv.org/pdf/1708.06193.pdf. 
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For simplicity assume zero vorticity:
!×# = 0 (irrotational—potential flow)
& = &'()*

+/-. (Bernoulli relationship)
! ⋅ &# = 0 (Continuity) 

We get that

! ⋅ ()
*+
-. !0 + 2' = 0, ∗

where 0 is a single valued periodic 
function and
# = !0 + 2' = !0 + 567!8 + 597!:.

This ensures that the toroidal and 
poloidal loop integrals ∮# ⋅ => equal 
567 and 597, the toroidal and poloidal 
vorticity flux, respectively.

Using the Chebyshev-Fourier reps in 
SPEC, writing 0 into 

0 =?
@,A
0B,@CA,@ D sin(I@8 − K@:) ,

casting the equation * into matrix 
form

M(NO)P) ⋅ NO = Q(NO)R) ⋅
567
597 ,

in which matrix M and Q depend on 0
due to the Boltzmann exponential 
factor, and are calculated iteratively 
by taking the last solution of 0 until 
converged. 

The boundary condition is
# ⋅ S = TU = 0.

Flow enters force balance only through pressure:  [[W'()
X+
+Y + P

- Q
-]] = 0

Preliminary SPECF implementation I
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Case 2: Reversed field pinches, single helical axis (SHAx)

Very small beta: pressure, and hence flow, plays negligible role in force 

balance

No flow Toroidal flow

Max Mach2 ~ 0.7

Poloidal flow

Max Mach2 ~ 0.7

Preliminary SPECF implementation 3
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Case1: Axisymmetric test case, !~1/3.
Constrain rotational transform (Helicity constraint is not implemented currently)

No flow Toroidal flow
Max Mach2 ~ 0.7

Poloidal flow
Max Mach2 ~ 0.7

Force 
balance
not much
changed

Force
balance 
changed

No flow at core because ill-defined vorticity flux

Flow faster in 
narrower region&~'/(

Preliminary SPECF implementation 2



19

Brainstorm:  3D Beltrami flow



kinetic energy – MHD potential energy + 
Lagrange multiplier constraint terms:
• MHD Lagrangian density in region i
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• Constrained Lagrangian in region i

Li =
�

�i

LMHDdV + �i(Si � Si0) + µi (Ki �Ki0)

Ki �
�

�i

A·B
2µ0

dV

• Helicity and entropy macroscopic invariants

Si �
�

�i

�

� � 1
ln

�
�

p

��

�
dV

LMHD = �
v2

2
� p

� � 1
� B2

2µ0

Derived from MRxMHD Lagrangian


