Equilibrium β -limits in classical stellarators and beyond

<u>J. Loizu</u> ^{1,2} , S. R. Hudson ³ , C. Nührenberg ² , J. Geiger ² , P. Helander ² , S. A. Henneberg ² SWISS PLASMA CENTER ¹ École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), Switzerland ² Max-Planck-Institut für Plasmaphysik, Euratom Association, D-17491 Greifswald, Germany ³ Princeton Plasma Physics Laboratory, Princeton New Jersey, USA		
Motivation	Ideal <i>β</i> -limit	Multivolume equilibria
 Maximum achievable β in stellarators may sometimes by the equilibrium and not by its stability [1,2]. Magnetic surfaces are not guaranteed to exist in 3D equilibria without continuous symmetry [3]. Vacuum field designed to possess magnetic surfaces 	where $t_{I} = \frac{\mu_0 I_{\varphi} R_0}{2}$ and $\nu = \frac{\beta}{2}$	Classical stellarator β -scan was repeated with SPEC using many volumes each supporting a small pressure step.
 Plasma currents potentially degrade magnetic surface 3D equilibria consist of an intricate combination of magnetic surfaces, magnetic islands, and chaos. Their computer crucial for confinement, stability, and for the correct 	etic Noth SPEC and VMEC show that t_a is	$-\frac{1}{8.5}$ 9 9.5 10 10.5 11 11.5 R

interpretation of experimental measurements.

- ► The **SPEC code** was developed as one possible approach to fulfil this highly non-trivial task [5].
- SPEC finds equilibria using a variational principle and allows the plasma to explore energetically favourable reconnection events while constraining pressure and current.
- Philosophy: start with a classical stellarator geometry with a simple pressure pedestal and study its β -limit [6].

- ► Fixed-boundary:
 - $R(\theta,\varphi) = R_{00} + \cos\theta + 0.25\cos(\theta N_{p}\varphi)$ $Z(\theta,\varphi) = -\sin\theta + 0.25\sin(\theta - N_{\rm p}\varphi)$
- Simplest model for a pressure pedestal:

 $p(\Psi < \Psi_a) = p_0$ $p(\Psi > \Psi_a) = 0$

• Either zero-net-current ($I_{\varphi} = 0$) or fixed-iota ($t_a = const$).

High- β equilibria and Shafranov shift

• Here $\beta = 0.15\%$ and $I_{\varphi} = 0$.

• Vertical line indicates $\Psi_a/\Psi_{edge} = 0.3$.

ZERO-NET-CURRENT:

• t_a scales with β as predicted by HBS.

• Emergence of a separatrix at $t_a = 0$ provides ideal β -limit: $\beta_{lim} = \epsilon_a t_v^2$

FIXED-IOTA:

• Imposing $t_a = t_V$ in HBS provides the amount of current required to clamp the rotational transform,

 $t_{I} = t_{v} \left(\sqrt{\frac{1}{2}} (1 + \sqrt{1 + 4(\beta/\beta_{lim})^{2}}) - 1 \right)$

• There is **no ideal** β -limit (I_{φ} prevents separatrix to form) but SPEC shows degradation of magnetic surfaces!

Exactly the same results are obtained (β -limit). Indeed the macroscopic equilibrium depends mostly on integral quantities and not so much on the profile details.

W7-X limiter configuration

VACUUM:

Boundary extracted from **Biot-Savart solution**

► 5/6 island chain ($N_p = 5$)

HIGH β , ZERO-CURRENT

- Robust equilibrium and t_a almost unchanged
- **HIGH** β , **FIXED-IOTA**
- Small I_{φ} enough to degrade outer surfaces
- ▶ 10/12 island chain

▶ Define $\beta_{0.5}$ at which Shafranov shift = 1/2 minor radius.

 $D = \lim_{N \to \infty} \frac{\log(N)}{N}$ $L \rightarrow 0 \log(L)$

We can quantify the emergence of chaos with the **fractal dimension**,

of each field line by counting in a Poincaré section the number of boxes N of size L that contain at least a dot. We expect D = 1 for a magnetic surface or an island and D > 1 for a chaotic field-line.

• At low β , we observe $D \approx 1$ in the entire volume. • At sufficiently high β , *D* jumps to $D_{crit} \approx 1.6$ in regions of increasing volume.

• We can measure the volume of chaos using $D(\Psi)$,

$$V_{chaos} = V_{tot} \sum_{i=1}^{n_{lines}} rac{(\Psi_i - \Psi_{i-1})}{\Psi_{edge}} \mathcal{H}(D(\Psi_i) - D_{crit})$$

Current-induced healing

SPEC used in newly designed quasi-axisymmetric stellarator with large bootstrap current and $\beta \approx 3\%$ [8].

HIGH- β , **ZERO-CURRENT**:

Boundary extracted from high- β VMEC with $I_{\varphi} = 0$

Large island chain opens at $t = n/m = 2/6 (N_p = 2)$

I _ = 560 kA

HEALING:

Addition of bootstrap-current produces healed equilibria with virtually no islands

DEGRADATION:

Further increase in current produces new resonances

► Theoretical scaling [7],

confirmed in SPEC calculations.

• Assuming that chaos emerges when $t_I(\beta) \sim t_V$, we get from HBS that

$$\beta_{chaos} = \sqrt{12} \epsilon_a t_V^2$$

which agrees very well with SPEC calculations.

Equilibrium appears to be quite sensitive to I_{φ}

Perspectives

A free-boundary version of SPEC is being tested and verified and will allow making predictions that can be validated against experiments.

References

[5] S. Hudson <i>et al.</i> , Phys. Plasmas 19 (2012)
[6] J. Loizu <i>et al.</i> , J Plasma Phys 83 (2017)
[7] J. P. Freidberg, Ideal MHD (2014)
[8] S. Henneberg <i>et al.</i> , in preparation (2018)

joaquim.loizu@epfl.ch

Varenna Fusion Theory conference 2018