Equilibrium S-limits in classical stellarators and beyond
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Classical stellarator 5-scan was repeated with SPEC using
many volumes each supporting a small pressure step.
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A High-Beta-Stellarator model (HBS) for a classical stellarator [7] was recently

~ Maximum achievable 7 in stellarators may sometimes be set | 4o, o1oned and predicts how ¢4 evolves with plasma 3 and current Iy

by the equilibrium and not by its stability [1,2].
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» Magnetic surfaces are not guaranteed to exist in 3D MHD
equilibria without continuous symmetry [3].

» Vacuum field designed to possess magnetic surfaces [4].

» Plasma currents potentially degrade magnetic surfaces [2].
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» Both SPEC and VMEC show that ¢5 is
Indeed reduced at finite 5.

» 3D equilibria consist of an intricate combination of magnetic
surfaces, magnetic islands, and chaos. Their computation is
crucial for confinement, stability, and for the correct
interpretation of experimental measurements.
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» The SPEC code was developed as one possible approach to
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fulfil this highly non-trivial task [5]. 0 02 04 06 08 1 | Exactly the same results are obtained (3-limit). Indeed the
1 Weage macroscopic equilibrium depends mostly on integral
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High-3 equilibria and Shafranov shift We can quantify the emergence of chaos with the fractal dimension, > 10/12 island chain
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of each field line by counting in a Poincaré section the number of boxes N of size L

that contain at least a dot. We expect D = 1 for a magnetic surface or an island
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N 0 0f and D> 1 for a chaotic field-line. SPEC used in newly designed quasi-axisymmetric
05 05 5 stellarator with large bootstrap current and 5 ~ 3% [8].
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