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A physical system is considered consisting of a rigid frame which is free to rotate about a vertical axis and to which is 
attached a planar simple pendulum. This system has "one and a half" degrees of freedom due to the fact that the frame and 
pendulum may freely rotate about the vertical axis, i.e., conservation of angular momentum holds for the "ideal," or 
unperturbed, system. Using a Hamiltonian formulation we reduce the unperturbed equations of motion to a conservative 
planar system in which the constant angular momentum plays the role of a parameter. This system is shown to possess one or 
two sets of homoelinic motions depending on the level of the angular momentum. When this system is perturbed by external 
excitations and dissipative forces these homoclinic motions can break into homoclinic tangles providing the conditions for 
chaotic motions of the horseshoe type to exist. The criteria for this to occur can be formulated using a variation of Melnikov's 
method developed for slowly varying oscillators [1, 2]. For the present problem, the angular momentum becomes a slowly 
varying parameter upon addition of the disturbances. These ideas are used to rigorously prove the existence of chaotic motions 
for this system and to compute, to first order, global bifurcation parameter conditions. Since two types of homoclinic motions 
can occur, two different chaotic modes of motion can result and physical interpretations of these motions are given. In 
addition, a limiting case is considered in which the system becomes a single degree of freedom oscillator with parametric 
excitation. 

1. Introduction 

There  now exist  many  examples  of  single degree of  f reedom nonl inear  osci l la tors  which exhibi t  chaot ic  

m o t i ons  when  subjected to per iodic  exci tat ion;  see, for  example ,  [3-7].  These  mot ions  typica l ly  arise due  to 

the  t ransversa l  in tersect ion of  s table and  uns table  mani fo lds  of  a saddle  type  per iod ic  mot ion,  thus 

resul t ing  in  the  Smale  horseshoe type of  chaos [9]. 

I f  one  s tar ts  wi th  a conservat ive p l ana r  system, i.e., a conservat ive single degree of  f reedom oscil lator ,  

wi th  mul t ip l e  equil ibria,  of ten the saddle  poin ts  separa t ing  the s table equi l ibr ia  are connec ted  to 

themselves  via  a saddle- loop,  or  homocl in ic  t ra jectory;  i.e., the s table  and  uns tab le  mani fo lds  coincide.  

Such t ra jec tor ies  form the mechanism for cer ta in  types  of  chaot ic  mot ions .  Us ing  Meln ikov ' s  me thod  one 

can  c o m p u t e  condi t ions  on the pa ramete r s  for  which these t ransverse  intersect ions,  and  hence chaos,  can 

occur .  The  m e t h o d  does not  guarantee  the existence of  a s t range a t t rac tor ,  i.e., s teady s tate  chaos,  bu t  does 

give a b o u n d  in pa ramete r  space be low which chaos is unl ikely  to occur. This  has  been  verified 

expe r imen ta l l y  for  some systems [5, 7]. 
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Fig. 1. The whirling pendulum. Mass m is restricted to a plane perpendicular to the frame J. 

The system to be considered here is depicted in fig. 1. It consists of a rigid frame which freely rotates 
about  a vertical axis and to which a planar pendulum is attached, the pivot being on the vertical axis. The 
behavior of this system is well known if the frame rotation rate, 0, is held at a constant value, say 12. Below 
a critical 12 the pendulum behaves essentially like a nonrotating pendulum, it has a stable equilibrium at 

= 0 and an unstable one at ~ = ~r. Above the critical 12 value, ~, = 0 becomes unstable and two new 
equilibria appear at ~ = ~ = +cos  -1 [ (g / l ) /Q2] .  As 12-, oo, ~--,  ± ~ / 2  as expected. 

If one were to add small dissipation at the pendulum pivot and allow a small periodic variation in 0, i.e., 
set ~ = ~ + e~ cos(tot) (0 < e << 1), the system becomes a forced oscillator similar to those found in refs. 
[3-7] and the usual Melnikov analysis can be used to predict the onset of chaotic motions. This type of 
perturbation is considered below as a limiting case of our more general system in which 0 is allowed to 
vary in accordance with the equation which governs the behavior of the angular momentum of the system. 

The system considered here has "one and a halF' degrees of freedom. The rotation of the frame is 
coupled to the motion of the pendulum via an angular momentum relationship. The orientation of the 
frame, measured by the variable 0, does not appear in the unperturbed equations of motion. In a 
Hamiltonian formulation one immediately obtains two constants of motion in the unperturbed case: the 
energy and the conjugate momentum associated with 0, hence this system is completely integrable. Upon 
the addition of small perturbations, the angular momentum and energy will vary slowly in time and this 
variation affects the occurrence of chaotic motions. The results in this paper should be of interest to 
experimentalists since often in rotating systems one can specify the applied torques but not necessarily the 
rotation speed itself. 

It is interesting to note that this rotating pendulum is very similar to the flyball governer which is used 
for speed control. Among its many uses, it was employed by the astronomer-mathematician G.B. Airy in 
the mid 1800's for observing fixed stars for extended periods by moving a telescope in opposition to the 
earth's rotation. He observed that the device was not always stable: " . . .  and the machine (if I may so 
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express myself) became perfectly wild" (Airy [8]). Of course it is not known whether or not the motion 
Airy observed was chaotic, but we show in the following that chaos can occur in a similar mechanism. 

This paper is arranged as follows. Section 2 describes the equations of motion and the structure of the 
phase space for both the unperturbed and the perturbed systems where the perturbations are considered to 
be periodic in time. The subsequent section describes the application of Melnikov's method to the problem 
and describes the nature of the chaotic motions which can result. Section 4 describes a limiting case in 
which the system becomes an ordinary parametrically excited single degree of freedom oscillator; a 
Melnikov analysis is given for this case also. Perturbations which are periodic in the rotational variable 0 
are considered in section 5. Again, Melnikov's method for this situation is given and the results are 
compared with those for time periodic excitation. The paper is closed with a summary and a few remarks 
in section 6. 

2. Equations of motion and the structure of the phase space 

2.1. The unperturbed system 

Referring to fig. 1 one can write the nondimensionalized kinetic and potential energies as 

T(•, ~, ~) = ~-~  = ½(/~ + sin2,)/~ 2 + ½q~2, (2.1) 

¢ 
V(q~) = ~ -~  = 1 - cos@, (2.2) 

where the quantities with circumflexes are unscaled, time has been rescaled by the nonrotating pendulum 
frequency, t = ~(g/l)~,  and ( ' ) =  d/d t  represents a derivative with respect to the dimensionless time t. 
The parameter # is a measure of the ratio of the frame rotational inertia J to the pendulum inertia, ml 2, 
i.e., /~ = J /ml  2. 

The analysis in this paper is most easily done if a first order, Hamiltonian approach is employed. Hence, 
the conjugate momenta for the system are defined as 

8T 
PO-- 0--~ =q~' (2.3) 

bT = (#  + sin2q~)/~, (2.4) P0 = " ~  

and the kinetic energy can be written in terms of these as 

(2.5) T(ep, p, ,  p,) = ½(Pg/(t~ + sin24~)) + xP,- 

The Hamiltonian is time-independent and is easily formed as follows: 

H(q), p , ,  p , ) =  T(q~, p , ,  Po) + V(q)), (2.6) 
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and provides, via Hamilton's equations, the unperturbed equations of motion 

0H 
~ =  ~ =P,t,, (2.7a) 

OH = s i n , ( -  1 + p~ cos , / ( /~  + sin 2,)2), (2.7b) p ,  = 

= O H _  Po (2.7c) 
OPo /x + sin2, ' 

OH 
~b 0 = -~-  = 0. (2.7d) 

Eq. (2.7d) is simply a statement of conservation of angular momentum and eq. (2.7c) uncouples from the 
other equations since 0 appears nowhere on the right-hand side. These observations allow a reduction of 
the system to a single degree of freedom conservative oscillator in the var iab les ,  and p, ,  with equations 
of motion (2.7a, b) which depend on the parameters /x and Po. The addition of perturbations will cause Po 
to vary in time whilst # remains, of course, fixed. 

For a given physical system # is a constant and Po is easily changed by providing different initial 
conditions. The qualitative structure of the phase portraits for the system (2.7a, b) depend on/~ and Po. To 
determine these, the dependence of the equilibrium configurations o f ,  on # and Po, and their stability, 
must be determined. From (2.7a) one immediately obtains the obvious condition that q~ = p ,  = 0 must hold 
for an equilibrium. The equilibrium condition from (2.7b) is satisfied by either 

sin ~ = 0 =* ~ = 0, ~r (2.8a) 

o r  

1 - cos~(  Po/(l~ + sin2 ~))2 = 0. (2.8b) 

Expression (2.8b) is equivalent to 

1 - ~2cos ~ = 0 (2.8c) 

and is more easily solved in that form. Since , = ~--cons tant  at an equilibrium, eq. (2.7c), (2.8c), or 

physical insight, indicates that/~ = po/(i  ~ + sin 2 ~) = 0 = constant also must hold for an equilibrium. Hence 
one obtains 

n 

~ =  +cos-1  (1//~ 2 ) (2.9) 

"7 

for the nontrivial _equilibria of the system. For 0 < 1 these do not exist and it is easily shown that q~ = 0 is a 
stable center for 6 < 1. At 0 = 1 a pitchfork bifurcation [9] occurs and as ~ is increased above 1 the two 
branches of (2.9) appear as symmetrically placed stable equilibria a n d ,  = 0 becomes a saddle point. 

The dependence o f ,  on Po is actually of more interest and is easily obtained by inverting (2.8b) to 
isolate Po as a function of , .  This indicates that Po = #  is the critical condition for the appearance of .-g 

nontrivial ~; this is equivalent to 0 = 1. 
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Fig. 2. Dynamic equilibria vs. Po. 

A summary plot of the equilibria dependence on Po is given in fig. 2. Fig. 3 shows phase portraits, p,  vs. 
~, for various initial energy levels with Po held fixed. Fig. 3a is for the case Po < #, the behavior is 
equivalent to that of the simple pendulum. Fig. 3b indicates the post-critical phase portrait, i.e., for Po > ~. 
Fig. 3c schematically shows how the family of phase portraits depends on Po, only the equilibria and some 
of the homoclinic motions are shown. This picture is a precursor for the three-dimensional Poincar6 map 
[9] to be used when the perturbations are added and Po begins to undergo slow variations. 

The homoclinic motions shown are of two types: (I) the usual "pendulum-type" part connecting ~ = ~r 
to itself (one going each way, clockwise and counterclockwise) and, in addition, (II) for Po > # the 
pendulum motion which is forward and backward time-asymptotic to ~ = 0. These homoclinic motions 
have the potential for producing at least two distinct types of chaos. 

For notational purposes the two families of saddle points given by (q~,p,,po)=(~r,O, po) and 
(~, P~,, Po) = (0,0, Po > #) will be individually denoted by "Y~(Po) and Yo(Po) respectively and collectively 
by "/(Po) in the following. Also, a homoclinic orbit associated with a particular Y(Po) will be written 
q(t, Po). Also, to distinguish the two types of unperturbed homoclinics the following labelling will be 
employed: 

pendulum type homoclinics- Type I, 
Duffing type homoclinics- Type II. 

See fig. 3c. 
The text by Nayfeh and Mook presents this unperturbed system as an exercise but overlooks the 

post-critical nontrivial equilibria by neglecting the inertia of the frame (exercises 2.9 and 2.10 in [10]). 

2.2. The perturbed system 

The perturbations to be considered here will be assumed small and include: (1) viscous damping in the 
bearings of the frame with associated damping constant c o , (2) viscous damping at the pendulum pivot 
with associated constant c,, (3) a constant torque T O applied to the frame about the vertical axis and (4) 
an oscillating torque T 1 sin(tot) applied to the frame, also about the vertical axis. These were chosen since 
they are typical of disturbances which might exist in an experimental set-up. Others can be chosen, of 
course, and the following analysis goes through directly as long as the perturbations do not depend on O. If 
they are allowed to depend on 0 in a periodic manner, but not on time, an equivalent formulation can be 
used [11] for predicting chaos, this is done in section 5. 
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Fig. 3. Phase portraits, p~ vs. ~. (a) Pe < I~, (b) Pe > ~, (c) stable and unstable manifolds of the saddle points vs. P0- 
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Fig.  3. C o n t i n u e d  

Retaining their first order form, the perturbed equations of motion can be written as 

---p~,, 

/~ = s i n ~ [ -  1 + p2cosq~/(l~ + sin2~) 2] + eQ,(p , ) ,  

t~ = po / (  l~ + sin2~), 

Po =- eQo( qJ, Po, t ), 

(2.10a) 

(2.10b) 

(2.10c) 

(2.10d) 

where Q, = - c , p ,  and Q0 = - c e p o / ( #  + sin20) + To + 7"1 sin(tot) represent the generalized forces not 
derivable from the potential V(O) [12, 13]. 

The form of these equations is quite interesting, (2.10a, b) are of the form of a weakly damped oscillator 
with a particular form of parametric excitation. This small excitation is applied through the Po term in 
(2.10b) and is governed by its own differential equation, (2.10d). Hence (2.10a, b, d) form a slowly varying 
oscillator [1, 2]. 

For e--0,  the physical system is represented by a one-parameter family of simple conservative 
oscillators. For 0 < ~ << 1 the structure of the phase space becomes more complicated in two significant 
ways. One change comes about due to the slow variation in P0, this necessitates extending the system to 
three time-dependent variables: (~, p,, P0)- Secondly, the fact that Qo depends explicitly on time means 
that the e ~ 0 system dynamics are governed by a third order nonautonomous set of ordinary differential 
equations and hence a four-dimensional extended phase space is required. The fact that Qo is periodic in 
time is an important feature of these equations. 

As is standard, the time T = 2~r/to Poincar6 map is defined as follows [9]. Consider a point, the initial 
condition, given by (¢(to), p,( to) ,  po(to)). Following its evolution in time, after one forcing period this 
point has evolved to (¢ ( t  o + T) ,  p~,(t o + T),  po(to + T)).  Without loss of generality t o can be taken to be 
zero and the Poincar6 map is defined as 

e: p,(O), p,(O))--, p,(r),  p,(r)). (2.11) 

The dynamics are thus studied by considering iterates of this three-dimensional mapping. 
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Certain features of the unperturbed system are preserved for 0 < e << 1, details of the following 
observations can be found in [1, 2, 14, 15]. 

Firstly, hyperbolic equilibria become small amplitude periodic motions for 0 < e << 1, e sufficiently 
small. However, in this system the equilibria, as considered in (~, p~, Pc) space, have a zero eigenvalue 
associated with the P0 direction, making them nonhyperbolic. The perturbing forces combine in a manner 
such that only some of the equilibria are preserved. The conditions for these are determined by averaging 
the P0 equation, (2.10d), along the unperturbed equilibria, over one period T and requiting the averaged 
system to have an equilibrium. Defining 

lf0T -Qo(eP, Po) = "T Qo(tk, pe, t ) d t =  - c o p o / #  + T o, (2.12) 

where ~ = ~ = 0 or ~r depending on which homoclinic is being considered. Setting Q0 = 0 one obtains 

To=coPo/# (=coo a t + : 0 o r ~ r )  (2.13) 

as the condition for a periodic motion to persist near ~ = 0 or ~r for 0 < e << 1. Expression (2.13) simply 
states that the constant torque T O and the dissipative torque at the saddle point, cot~, must balance to first 
order. This agrees with intuitive expectations for a periodic motion; given values for T O and c o eq. (2.13) 
sets the nominal P0 value at which periodic motions will exist. It should be noted that 3'(P0), the curves of 
equilibria in (~, p~,, Pc) space for e -- 0, perturb, for 0 < e << 1, into invariant, one-dimensional, time-peri- 
odic manifolds. To first order, the flow along these is governed by eqs. (2.10) evaluated on 7(P0). This flow 
is slow, in fact of t0(e), between the periodic motions which exist at the P0 satisfying (2.13). 

The periodic motions at Pe = #To/ce are represented by fixed points for the map P, these are denoted by 
$,(,~e) or simply $~. In the case when the original unperturbed equilibrium, 3'(P0), is of the saddle type in 
the (~, p , )  plane, the resulting periodic motion, 7~(P0), is also of saddle type and is represented by a 
saddle type fixed point, 7~(Pe), for P. This saddle point has a one-dimensional unstable manifold 
W"($,(p0))  and a two-dimensional stable manifold WS($~(ff0)), see fig. 4. The stable manifold has one 
slowly contracting direction associated with the slow P0 behavior. The P0 behavior of the map near the 
fixed point is approximately governed by the averaged equation which is easily constructed from (2.12). 

I 
Fig. 4. The fixed points ~7~ and their stable and unstable manifolds. 
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Fig .  5. (a)  W u n W s = $. (b)  W u 7~ W s. 

These invariant manifolds for the map P are d~(e) close to their unperturbed counterparts for the 
original flow over semi-infinite time intervals, see fig. 5. The existence of chaotic motions for this system 
depends on the occurrence of transverse homoclinic points for the perturbed Poincar6 map. The following 
section provides a method for detecting such intersections and describes some of the associated com- 
plicated dynamics. 

3. Melnikov's method and the existence of chaotic motions 

Both one-parameter families of saddle points in fig. 3, ~ -- ~r and ~ = 0 (Po > #), have coincident stable 
and unstable manifolds which form two-dimensional surfaces (the two dimensions can be parameterized 
by time, along a particular orbit, and P0)- The influence of the perturbations is to disturb this coincidence 
in one of two generic ways, depending on the parameter values. The manifolds may pass by each other as 
depicted in fig. 5a, or they may intersect transversally as indicated in fig. 5b. Fig. 5b shows the nature of 
the winding and accumulation for W u that must occur in this case (W s behaves similarly but is difficult to 
include in the diagram). The existence of a point like q, where W s and W u intersect in a nontangent 
manner, guarantees the existence of chaotic dynamics for the system via the Smale-Birldaoff homoclinic 
theorem [9]. Points such as q are termed transverse homoclinic points and are forward and backward 
asymptotic to the saddle point Ye(P0) under iterates of P. This follows directly from the invariance of 

W~(~(po)) and W"(~(~o)). 
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In order to detect the existence of such transverse homoclinic orbits, a version of Melnikov's method is 
used. For more details on Melnikov's method as developed for slowly varying oscillators, see [1, 2]. The 
main idea is to follow WS(~(ff0)) and W"(y,(ffe)) and measure, to first order in e, the separation between 
them. This is done by using first order variational equations around the unperturbed homoclinic orbit, 
q(t, Po), based at the saddle point 7(Pc) and by using these equations to formulate a distance function, 
d(a), which measures the separation. This distance function depends on a phase variable, a, that 
parameterizes the unperturbed homoclinic orbit, i.e., it is essentially a time variable. The distance function 
also provides information about the relative orientation of W s and W u. When d(a) is positive (negative) 
W ~ is "inside" ("outside") of W u, i.e., at time t = a W s is closer to (further from) the unperturbed 
center around which q(t, Pc) passes. If there exists an a, say ~, such that d(~)  --- 0 and Od/Oa (~) ~ 0, i.e., 
d(a) has a simple zero, then at t = ~ W ~ and W ~ intersect transversally [1, 2, 9]. One such intersection 
implies, via the invariance of W s and W ~, the following: (1) the existence of infinitely many such 
intersections and (2) the existence of three-dimensional horseshoes for the map P, which in turn implies 
the existence of (a) infinitely many unstable periodic motions of arbitrarily long periods, and (b) infinitely 
many unstable nonperiodic, i.e., chaotic, motions. 

The distance function d(a) can be formulated in such a manner that it is relatively easily computed. The 
calculation involves first order variations of the unperturbed stable and unstable manifolds due to the 
perturbations, see [1-3, 6, 9, 11, 13] for details and other examples. The Melnikov function, M(a), is 
related to d(a) as follows: 

= eM( ) + (3.1) 
(OH (OH po)) + ) 

and is, for our example, given by 

M( a) ffi f~_ [ OH.~Q~ + _~_~e Qe] { q( t, ~o), t + a } dt _ f Qe(q(t, Po),t +a)dt.  

(3.2) 

{ } bracketed term indicates that the functions in the integrals are to be evaluated along the The 
unperturbed homoclinic orbit at P8 =Pc,  q(t, Pc), and that the explicitly time-dependent terms are to be 
evaluated at time t + a. This formulation is not the most general for slowly varying oscillators, the reader 
should see refs. [1, 2] for a general and thorough treatment. For the following results P0 > # must hold. 

From eq. (3.1) it is seen that for e sufficiently small, the nature of M(a) captures that of the distance 
function, d(a). Specifically, if M(a) has simple zeros, d(a) will also (for small e). In addition, the 
transitions from no zeros, to tangent zeros, to simple zeros of d(a) is mimicked by M(a), i.e., global 
bifurcations involving homoclinic tangencies can be captured by M(a) [9]. 

The form of M(a) given in (3.2) is rather unenlightening, a more understandable presentation is found 
by substituting in for the Q's  and the OH/ap terms: 

M(a) = f ~  [ - c ÷ ~  2 + t f ( - c e / ~ +  T o +  T zs in(~o( /+  a ) ) ) ] { q ( t , ~ e ) , t +  a} dt 

- To f~  ( - cet~ + T o + T z sin (oo(t + or)))] (q(t, Pc), t + et) dt, (3.3) 
C 0 J _ ~  
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where q, and/J should, at least formally, be replaced by p ,  and Po/(# + sin2 th) respectively. However from 
a theoretical viewpoint it is easier to treat M(a)  in the above form. 

It is convenient to rewrite M(a) as follows: 

M ( a )  = -c~,I  1 - coI2 + TlI3(~o, a), 

F Po)/dt, 

ro/co] (q(t,  o)ldt, 

= f =  [ -  To~co + O] + , ) )(q( t ,  + 

(3.4) 

The integral 1 x is well behaved since q~ approaches zero exponentially fast at both ends (t ~ + o¢) of the 
unperturbed homoclinic motion q(t, Po). Integral 12 has potential convergence problems since 0 ~ constant 
as t---, + oo along q(t, Po) but is rescued by employing the condition P0 = #To/co which implies that /~ 
approaches To/c o as t ~ + oo along q(t, Po). The integral I3(~0, a) can be further simpfified in two steps. 
The following analysis holds for both types of homoclinic motions. First we deal with the - To/c o term in 
the integral. Expanding sin(t0(t + a)) and evaluating the improper integral as a limit of a sequence of 
proper integrals gives 

~ T° sin(to(t + a) )d t  
oo CO 

= lllTl [[ TOcO COS f2~ri/~o To sin ~oaf2~i/~ cos ~ot dt ] O. toa _ 2~i/~oSin tot dt + - -  = 
i ~ o¢ CO " - 2 , h i / t o  

(3.51 

Next we deal with the/~ sin to(t + a) term in the integral. First, one notes that/~ is an even function of t on 
q(t, Po) if t = 0  is taken to be at the "midpoint" of q(t, po ). Then by expanding s i n ( t o ( t + a ) ) =  
sin(tot)cos(too) + cos(o~t)sin(o~a), the odd part of the integrand, /~ sin(o~t)cos(t0a), can be eliminated 
since it integrates to zero. The remaining term,/~ cos (o~t)sin (t0a), is still only conditionally convergent in 
the integral. It is computed by considering the integral as a limit and integrating once by parts as follows: 

I3(o~,a ) = s i n ( ~ a )  lim [~sin(o~t)["  1 ( , ~  [O'sin(o~t)] { q( t, po) } dt] . 
¢O J_~i 

(3.6a) 

By choosing the sequence of times ~/= 2~ri/to, letting i (=  1, 2, 3 . . . .  ) ~ oo, and using (3.5) one finally 
obtains 

I3(oa, a)  = sin (oaa)/3(oa), 

(3.68) 
i3(o~) = ~ f~oo[O'sin(~t)l(q(t, ~o)) dr. 

i3(o~ ) is well behaved; the acceleration of the frame, 0] is an odd function of time and approaches zero 
exponentially as t -* + ~ on q(t, Po). Thus the desired form of M(a)  is given by 

M ( a )  = - % I  1 - coI 2 + TlI3(oa) s in (~a ) .  (3.7) 
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The general behavior of M(a) is now apparent. For fixed parameter values (~t, c,,  c 0, T 0, T 1, to) the 
terms -(c~1 z + coI2) and Tli3(to) are constant. Hence, as a is varied M(a) oscillates about a mean value 
of - ( c , I  1 + coi2) in a harmonic manner with an amplitude of Tli3(to ). It is quite simple to then 
determine the general relative behavior of W~(~(~0)) and WU('~(~0)). 

It is obvious that 11 > 0 since ~, is not everywhere zero along a homoclinic motion. Similarly, we have 
I z > 0. (The sign of f3(to) is of no consequence since it is simply a term in the amplitude of an oscillating 
function.) 

Now for T 1 -- 0 (no oscillatory input) M(a) is identically zero if 

Thus for c ,  and c o of opposite sign, the system possesses a homoclinic motion. The situation, for/ '1 = 0, is 
as follows: 

(C,)c..o0 < - ~(12) ---, M(a) > 0, WU"outside '' WS; (3.8a) 

(c~).b_o0 = - ~(12)~ M ( a )  = 0, Wu and WS coincident; (3.8b) 

(c,).b_o0 > - Tt(12)> M ( a )  < 0, W""ins ide"  W s . (3.8c) 

(The condition (3.8b) is valid to order e.) Case (3.8a) indicates that if c J c  o is sufficiently small, the 
pendulum motion will escape beyond q(t, Pc) for initial conditions near the saddle point ~. For the ~ = ~r 
homoclinic (Type I) this implies that sustained motions involving the pendulum swinging over the top can 
occur. For the ~ - - 0  homoclinic (Type II) it implies that motions can achieve steady-state amplitudes 
above the maximum displacement on the associated q(t, Pc), these may also potentially end up as 
sustained rotational motions. If condition (3.8c) holds the motions are "swept inside" of q(t, Po) and 
typically end up at lower amplitudes. For the ~ = ~r homoclinics (I) this implies that the system will settle 
down to either a periodic or steady nonrotational motion and for the ~ = 0 homoclinics (II) it means that 
the motion will settle down to some type of an oscillatory or, more likely, a steady motion near ~, = 
given by eq. (2.9). 

The above general discussion is summarized in fig. 6. In the figure it has been assumed that 
( - I2 / I t )  I > ( - I2 / / I z ) i i ,  the other case is similar and is easily worked out. Also, in this case (T 1 --- 0) the 
system is autonomous and thus the invariant manifolds shown are for the differential equation, not for the 
map P. Similarly the points ~ = 0, 4, cos- l (1 /~)  are equilibria, not periodic motions; this is so since there 
is no periodic input. 

For T 1 ~ 0 the sequence of diagrams in fig. 6 is complicated by several things. Firstly, the system 
becomes nonautonomous and thus all figures must be interpreted in terms of the discrete time map P. 
Also, the homoclinic bifurcations depicted in figs. 6b, d each split into a pair of homoclinic tangencies, i.e., 
two global bifurcations must occur to go from fig. 6a to 6c and two more must occur for the 6c to 6e 
transition. (In reality infinitely many bifurcations occur as one passes through a homoclinic tangency, here 
only the primary global bifurcations are considered [4, 9].) 

The homoclinic tangencies occur near (t~(s)) the points where M(a) has tangent zeros. These occur 
when the magnitudes of the mean value of M(a), Icj1 + colzl, and the oscillatory amplitude, I Tli3(to)l, 
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Fig. 6a-e.  The autonomous case, T 1 = 0. (See fig. 7 also.) (a) Case (3.8a) for I and II. (b) Case (3.8a) for I, (3.8b) for II. (c) Case 
(3.8a) for I, (3.8c) for II. (d) Case (3.8b) for I, (3.8c) for II. (e) Case (3.8c) for I and II. 
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Fig. 6. Continued 
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Fig. 7. Bifurcation diagram for T 1 ~ 0, the nonautonomous  case. 

are equal: i.e., at a driving amplitude of 

I c~,I x +coI 2 
Tx* -- ~ ( - ~  . (3.9) 

Fig. 7 shows the homoclinic bufurcation diagram assuming (-Iz/I1)t>(-Iz/I2)Ii. Bifurcation 
"wedges" emerge from the autonomous homoclinic points and chaotic dynamics are possible at parameter 
values interior to these wedges. For T x ~ 0 the behavior at parameter values exterior to the wedges is very 
similar to the corresponding T 1 = 0 behavior; however, the system is nonautonomous and thus fixed points 
represent periodic motions, etc. In fig. 7 for T 1 :~ 0 the portions of fig. 6 previously referred to are now 
underlined to remind the reader that the diagrams must be properly interpreted in terms of P. Fig. 8 
depicts the remaining, and more interesting cases from fig. 7. 

Several interesting dynamic behaviors are possible. For instance, inside the wedge II, chaotic motions 
are possible in which the pendulum erratically swings back and forth past @ = 0, but not over the top; this 
is very much like the chaos observed in Duffing's equation [3, 4, 7]. Inside the wedge I chaotic motions 
exist in which the pendulum undergoes arbitrary sequences of clockwise and counterclockwise rotations 
about @ = ~r [5, 6, 13, 16]. This example provides two distinct types of chaotic motions commonly studied. 
In fact, in the region where the interiors of both wedges intersect, both types of chaos are simultaneously 
possible. The dynamics in that region have the potential for the system "hopping" from one type of chaos 
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Fig. 8a-g. Structures of the invariant manifolds (refer to fig. 7). 
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to another; this cannot be proved using the present methods since the invariant manifolds for the two 
types of chaos remain bounded away from one another. However, for P0 = 0(1/e2) it may be possible to 
predict, using methods similar to the present ones, when these manifolds mingle thus proving the existence 
of such "hopping." 

The types of chaos which exist here involve arbitrary sequences of physically different events. For the 
pendulum type of chaos (I) there exist motions in which the pendulum swings through approximately full 
2~r revolutions in arbitrary clockwise and counterclockwise sequences. For the Duffing type of chaos (II) 
there exist motions which swing back and forth through ~ = 0 towards ~ > 0 and ~ < 0 in arbitrary orders. 
The proofs of these statements involve the use of symbol sequences and symbolic dynamics applied to the 
hyperbolic Smale  horseshoes which exist when W s and W u intersect transversally. See [2, 9, 13] for details. 

The diagram of fig. 7 contains qualitative information about motions other than chaos. Similar 
reasoning as was used in the T~ = 0 case indicates that, for example, sustained rotational motions are 
possible for parameter values to the left of wedge II. Other similar observations can be made as well. 

It must be pointed out that a different bifurcation diagram must be considered if ( -  12/11) Ir > ( -  12/11)I. 
Essentially, the order of wedges I and II  is switched and the sequences of bifurcations are changed. The 

I 

details of that case can easily be worked out in the manner presented above. 

4. A limiting ease 

Considered in this section is the case when the rotating frame is assumed to be massive m comparison 
with the pendulum: i.e., /~ is large. In this case it is desired that 0 be a specified function of time, as 
compared with the torque which was specified in the above. This can be accomplished by allowing #, T 0, 
co, T 1 and Po to be large enough such that 6 is specified and the pendulum dynamics have an insignificant 
effect on the motion of the frame. In this case the applied torques will specify 0. 

Eqs. (2.10) become a set of singularly perturbed equations of motion in this case, here only first order 
effects are considered. With #, To, co, T z and P0 large, (2.10d) simplifies to (e is, of course, removed) 

Po --- - coPo/# + To + 7"1 sin tot, (4.1) 

which has a steady state solution given by 

/x2Tx sin(tot + ~) ,  (4.2) /~T° + to2/~2 Po = co + c~ 

where g' is an inconsequential phase angle. In this case, # >> i which implies Po = #/~ (from 2.4) and hence 
that /~ will follow Po according to 

- - =  /~T1 
•__ Po To + sin(tot+ g'). 

I "L C8 022# 2 + C~ 
(4.3) 

Now,/~ ---po/l~ is the parametric excitation term in (2.10b) and is now a known time-dependent function. 
Here it is assumed that/~ can then be expressed as 

t~ = 12 + eft sin(tot), (4.4) 
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where 12 = To~co, eft = #Tx/(o~2# 2 + c 2) and the phase angle ~/' is dropped without loss of generality. The 
system is now a single degree of freedom oscillator with weak parametric excitation and damping, the 
equations of motion are obtained by substituting (4.4) into (2.10a, b) 

=Pc,  

p, = s i n ~ [ -  1 + g~cos~] + ~ ,  + ~(~:), 

0.~, = - c , p ,  + 2~fl sin ~ cos ~ sin (tot). 

(4.5a) 

(4.5b) 

~22 
Jq(4,,p,) = + -Tsin~,~,-cos,t, 

+ (1 - 122cos ~) sinO = e [ - c , ~  + 2~2fl sinO cos ~ sin (a~t)]. 

The unperturbed system (e -- 0) has Hamiltonian 

(4.6) 

(4.7) 

and unperturbed phase portraits equivalent to those in figs. 3a and 3b for 12 < 1 and 12 > 1 respectively. 
(Recall that p ,  = ~.) 

The usual planar Melnikov analysis [9] is applicable and gives a Melnikov function of 

. .  r o n .  1 
3~t(a) = j_  oo [~p-~¢ Q,]  ( t]( ,) ,  t + a} dt (4.8a) 

= f-~oo [ - c '~z  + 212fl sin~ c o s ~  sin ( t o ( / + a ) ) ] { [ l ( t ) , t +  or} d t  (4.8b) 

= --CoI 1 4" 2~2~I2(60 , 0/), (4.8C) 

I1 = f ?  [ ~ 2 ] ( q ( t ) )  d/,  
oo 

I2(~°' a ) =  f?oo [sinO cos ~ sin (~0(t + a))]{ ~(t) ,  t + a} dt, 

where #(t) represents a homoclinic motion for the e = 0 version of (4.5). i2(~0, a) can be simplified as was 
done in section 3, here it has a different form for each of the two sets of homoclinics. There are no 
convergence problems whatsoever since both sin ~ and p,  approach zero exponentially fast as t ~ + oo 
along any of the #(t). 

The global bifurcation result, where ~r(a) has tangent zeros, can be expressed as 

B* = call 
2 ~2~--i2 (60) . (4.9) 

i 2 ( ~ 0 )  = f_~ [ p, sin¢cos,l, sin(o~t)] { #(t) } dt. 

Here there is no advantage to using the p (momentum) variables; the second order form of the oscillator 
equation is (neglecting ¢(e 2) terms) 
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The integral 1(to) is the nonvanishing amplitude of the I2(to, a) term; it can be shown that I2(to, a ) =  
i ( ~ )  cos (,o,~). 

Here the possible dynamics are much less complicated. For positive %, ~r(a) maintains a negative 
mean value and has no zeros, tangent zeros or simple zeros for B <//*, B = B* (to 6(e)) and B > B* 
respectively. The damped, unforced system has no homoclinic motions. 

The qualitative features of the bifurcation diagram for this case are easily obtained from fig. 7. Letting 
co, To, /'1, ~ and P0 become large, it is seen that Tt/c  o remains finite and generally nonzero while (CJCo) 
approaches zero. Thus the two wedges in fig. 7 are pushed together at the origin while their slopes remain 
finite and, in general, different. The diagrams referred to from figs. 6 and 8 again must be correlated to the 
present situation: a two-dimensional Poincar6 map with saddle points having stable and unstable 
manifolds which are one-dimensional. 

The discussion of this limiting case is closed here, there exist several examples of chaotic motions in 
forced, damped oscillators such as this one, the reader is referred to [3-7] and the references contained 
therein. 

5. The case of spatially-periodic disturbances 

In certain circumstances there may exist external disturbances which depend on the 0 orientation of the 
pendulum; these are necessarily 2~r periodic in O. Examples of these include magnetic fields or aerodynamic 
loads from nonrotating components. 

If the disturbances are not time-dependent, a formulation can be given in which the system recovers the 
form of a slowly varying oscillator. In general the equations can be written as 

--p~, (5.1a) 

OH 
p ,  = - + p , ,  0, p0),  ( 5 1 b )  

t~ =Po / (#  + sin2~) = ~H (5.1c) 
Opo ' 

Po = eO_.o( ep, p , ,  O, Po ), (5.1d) 

where Q,  and (~0 are 2~-periodic in 0 and ~. It is now assumed that the system's 0-rotational direction 
does not reverse, i.e., that 0 is strictly positive (or strictly negative, it does not matter). A change of 
variables is then implemented, this transformation suppresses the time dependence of the dynamic 
variables and renders 0 as the independent variable. Denoting d / d 0  as ( )' eqs. (5.1) can be written with 0 
as the independent variable: 

/[ *'=P* 

^ OH 

0 ' =  1, (5.2c) 
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Here (5.2a, b, d) constitute a slowly varying oscillator, and (5.2c) is analogous to the equation i = 1 for the 
case of time-dependent disturbances. 

In this case Melnikov's method goes through exactly as before with eqs. (5.2) replacing (2.10) and 0 
replacing time. Hence, the Poincar6 map is defined as follows: 

Po: (q)(O), p,(O), po(O)) --* ((#(2'~), p , (2~) ,  po(2"~)) (5.3) 

where the explicit argument of ~, p,  and Po is 0. The unperturbed (e = 0) phase space is, of course, 
topologically equivalent to that for the previous case; they will not be identical, however, due to the fact 
that the equations are divided by OH/apo =Po/(# + sin2~) and the level curves of H at each value of Po 
are now parametrized by 0 instead of time. When the perturbation is "switched on" this structure breaks 
up in the same qualitative manner as in the time-dependent case. 

The condition for an equilibrium to continue as a fixed point of Po under the addition of perturbations 
is that the following 0-averaged system have an equilibrium: 

= G(4,, p,, po), 
- -  I t 2 ~  ^ . 

O.o = Jo o.ot 4,, p,, o, po) dO. 
(5.4) 

This again will lead to a condition which balances the external energy sources with dissipation to first 
order. The fixed points are again denoted by $~ and the Po values at these are given by P0- The Melnikov 
integral for this case is then given by 

[ an ^ ~ion ] 
M o ( a )  = J_oo[-~Qolt-~o ) + Qo { q( O, Po), O + a } dO 

(,(po)) f= Oo{q(O,~o),O+a}dO. (5.5) 
ap, -oo 

Note that the formulation is identical to (3.2) in nature. The integrand is evaluated along an unperturbed 
homoclinic motion q(O, Po) which is based at the saddle point at P0 and which is parametrized by 0. Note 
that since 6I is single-signed, 0 is monotonic if not taken to be mod(2~r), and hence is asymptotic to + oo 
at the ends of the homoclinic motions. 

Further details require specific expressions for the perturbations and are not considered here. In general, 
Mo(a ) will have behavior similar to M(a) and it is expected that chaotic motions will exist for open sets of 
parameter values. 

In fact, if one considers /~ (or, equivalently, Po) to be nominally large with small deviations, due to 
variations in ~ and the conservation of angular momentum, then 

O=Qt+eq, and 6 = ~ + e ~ ,  

and 0-dependent disturbances, with terms such as sin (0), are approximated by sin (12t) + 0(e). Since these 
disturbances are of ~P(e) themselves, the differences between the 0 and the t formulations are pushed out 
to ¢P(e2). Hence chaos will definitely exist in at least some cases. 
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6. Discussion 

A simple physical system with "one and a half" degrees of freedom has been shown to exhibit at least 
two distinct types of chaotic motions under certain parameter conditions. These two chaos types are: (I) 
like that found in the planar nonrotating pendulum [5, 6, 16] and (II) similar to those which occur in 
Duliing's oscillator with negative linear stiffness (for example a buckled beam) [3, 4, 7]. These can even 
occur simultaneously and it is not improbable that chaotic "hopping" from one type to another may 
Occur.  

This system could be easily studied in a physical experiment. The validity of Melnikov's method in 
predicting steady-state chaos (strange attractors) could be checked against simulations and experiments as 
has been done by Moon and his co-workers [5, 7]. One might expect to see the following scenario as the 
parameters are varied: first, the existence of two (or possibly more) periodic steady-state .motions, each of 
these undergoes a sequence of bifurcations resulting in two separate strange attractors (one each of Duffing 
and pendulum types) and finally, a crises [17] occurs in which these two attractors collide resulting in a 
single strange attractor. This final attractor would retain many features of both of its predecessors while 
permitting the chaotic hopping between them as described above. Simulation studies have verified the 
existence of chaotic dynamics in a speed controlled whirling pendulum [18]. In fact, pendulum-type, 
Duffing-type and "combination-type" strange attractors have been observed for that system. 

An important feature of the system considered here is that the dynamics of the pendulum are allowed to 
couple back into the apparatus through which it is being driven. This is often unavoidable in an 
experiment and it has been shown that chaotic motions can generally persist in such a situation. 

Comparing the results of the general and limiting cases (sections 3 and 4, respectively) indicates that, 
while chaotic motions do exist in the speed controlled case, the dynamics of the torque-controlled case are 
more varied. This is due primarily to the fact that the trajectories in the phase space can "escape" to large 
amplitudes, thus providing the possibility for sustained rotational motions and facilitating the potential 
"hopping" between the two types of chaos. 
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