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I. Importance of ideal-MHD

Understanding three-dimensional (3D), ideal-MHD
equilibria, as described by the ideal force-balance equa-
tion, ∇p = j × B, is fundamentally important for un-
derstanding the behavior of magnetically-confined plas-
mas. The potentially-dangerous instabilities that cause
edge-localized modes, an important concern for ITER,
are widely believed to be ideal, peeling-ballooning modes
[1]; and a ‘hot-topic’ of current research is to discover
how these modes may be suppressed by applying reso-
nant magnetic perturbations (RMPs), i.e. by 3D effects
[2]. Whilst there exist extended-MHD codes [3] with non-
ideal physics, these codes come with significant computa-
tional cost; and so the plasma response to 3D perturba-
tions is routinely determined perturbatively using codes
such as IPEC [4], the Ideal, Perturbed Equilibrium Code.

However, there are two fundamental difficulties that
are frequently over-looked.The first is the existence of
infinite currents near resonant surfaces, and the second
that ideal-MHD equilibria are not analytic functions of
the 3D boundary.

II. Unphysical, pressure-driven currents

The infinite currents arise from enforcing charge
conservation, ∇ · j = 0, in equilibria with smooth
profiles. Wherever there are pressure-driven, per-
pendicular current-densities, j⊥ = B ×∇p/B2, there
must also be parallel current-densities that satisfy
B · ∇u = −∇ · j⊥, where j ≡ uB + j⊥. The solution
for each Fourier harmonic, in straight-field line coor-
dinates, is um,n=i(

√
g∇ · j⊥)m,n/(ι- m − n)+∆m,n δ(x),

where x ≡ ι- − n/m is the ‘distance’ in rotational-
transform from the rational surface, and ∆m,n is an as-
yet undetermined constant.

MHD is a macroscopic model of plasma dynamics
with no intrinsic length scale; and the δ-function density
is just a mathematical idealization of localized currents.
Singularities in the current-density are allowed, but the
total current,

∫

j · ds, passing through each and every
surface must be finite for a physically-acceptable equilib-
rium.

The net current between adjacent flux-surfaces, e.g.
x = −ǫ and x = +ǫ as ǫ → 0, resulting from the resonant
δ-function density actually integrates to zero. However,
the resonant Pfirsch-Schlüter current passing through the
cross-sectional area enclosed by two flux-surfaces close to
the resonant surface, e.g. x = ǫ and x = δ where ǫ and δ
are small, between θ = 0 and θ = π/m resulting from the

1/x current-density is proportional to
∫ δ

ǫ
1/x dx, which

logarithmically approaches infinity as ǫ approaches zero.
This is not physical: the ideal-MHD equilibrium

model, with nested flux-surfaces, cannot admit pressure
gradients in a small neighborhood of each rational sur-

face. Because the rational surfaces are dense, this means
that there can be no pressure at all, if the pressure
is smooth; or the pressure must be fractal [5] and not
amenable to standard numerical discretization; or the
pressure must be discontinuous [6]; or the equilibrium
boundary must be restricted to ensure that the appro-
priate resonant harmonics of the geometry vanish [7–9].

III. Breakdown of perturbation theory

The non-analyticity of ideal-MHD equilibria is en-
countered when computing the plasma displacement in-
duced by an O(ǫ) perturbation to the boundary of
an equilibrium state. Assuming an expansion ξ ≡
ǫ ξ

1
+ ǫ2 ξ

2
+ . . . , the first-order displacement satisfies

L0[ξ1
] = 0, where L0[ξ] ≡ ∇δp − δj × B − j × δB, where

the ‘ideal’ perturbations to the field and pressure are
δB[ξ] ≡ ∇× (ξ × B) and δp[ξ] = (γ−1) ξ ·∇p−γ∇·(pξ).

The operator, L0[ξ], is singular. To match a finite
displacement at the boundary, and to ensure that the
resonant component of the normal field vanishes at each
rational surface (so that magnetic islands do not form),
the solution for ξ

1
must, generally, be discontinuous at

each resonant surface. A discontinuous displacement is,
however, inconsistent with nested flux-surfaces. The sec-
ond order term satisfies L0[ξ2

] = −δj[ξ
1
] × δB[ξ

1
], and

ξ
2

is even more singular than ξ
1
. The breakdown of per-

turbation theory was known by Rosenbluth et al. [10],
who wrote “we must abandon the perturbation theory
approach” when computing ideal-MHD equilibria in 3D.

IV. A new class of self-consistent solutions

These difficulties are not fundamental flaws in ideal-
MHD, which remains perhaps the most successful, rele-
vant yet simplest model of plasma dynamics. It is just
that, until recently, self-consistent solutions to the ideal-
MHD equilibrium equation for arbitrary 3D geometry
had not been discovered. There is, surprisingly, a class of
solutions that eliminates both the infinite currents and
the non-analyticity.

Recently, Loizu, et al. [11], for the first time, com-
puted the 1/x and δ-function current-densities in 3D
equilibria; and we realized that self-consistent solutions
demand locally-infinite shear at the resonant surfaces.
We then introduced [12] a new class of solutions that ad-
mit additional δ-function current-densities that do pro-
duce finite net currents between adjacent flux-surfaces,
with a commensurate discontinuity in the rotational-
transform that removes the singularities.

Most importantly, our solutions yield predictions
that are in sharp contrast to previous predictions, with
direct implications for understanding the penetration of
RMPs in tokamaks: in ideal-MHD, a resonant pertur-
bation penetrates past the rational surface and into the
core of the plasma; and the perturbation is magnified by



2

pressure inside the resonant surface, increasingly so as
stability limits are approached [13].

V. Verification with analytic solution

For illustration and verification, we consider the lin-
ear and nonlinear, ideal response to a resonant boundary
perturbation in cylindrical geometry. The equilibrium
is defined by an arbitrary, smooth pressure profile, p(r),
and a rotational-transform profile,

ι-(r) =

{

ι-0(r) + ∆ι-/2, for r < rs,
ι-0(r) − ∆ι-/2, for r > rs,

(1)

with ι-0(r) chosen so that ι-(r) jumps across the rational
ι-s ≡ n/m, namely ι-(rs) = ι-s ± ∆ι-/2. The linearized
equation, L0[ξ] = 0, reduces to Newcomb’s equation [14],

d

dr

(

f
dξ

dr

)

− g ξ = 0, (2)

where ξ is the radial component of the resonant plasma
displacement, and f(r) and g(r) are determined by the
equilibrium. For ∆ι- = 0, Newcomb’s equation is singular
where ι-(rs) = n/m, because there is an order-two zero in
f(r) and an order-one zero in g(r), and this is the cause
of the non-analyticity. For ∆ι- > 0 the singularity is re-
moved; and for ∆ι- > ∆ι-min (the minimum required to
ensure that the perturbed flux-surfaces do not overlap)
the equilibrium equations comprise an analytic function
of the 3D boundary and the perturbation expansion ac-
curately approximates the true nonlinear solution. The
value of ∆ι-min may be estimated analytically [12].

VI. Penetration and amplification of RMP

For continuous transform, i.e. ∆ι- = 0, the linear
solution predicts complete ‘shielding’ of the perturba-
tion at the resonant surface, and no penetration. For
∆ι- > 0, the displacement penetrates past the resonant
surface and into the origin. Fig.1 shows the result of nu-
merical integration of Eq.(2), using smooth polynomials
for p(r) and ι-0(r), with ∆ι- > ∆ι-min, and for increasing
plasma pressure. The perturbation inside the resonant
surface is magnified by plasma pressure, extremely so as
ideal-stability limits are approached [13].

VII. Benchmarking linear & nonlinear codes

Our solution has resolved a confusion in efforts
[15, 16] to benchmark the linearly-perturbed solutions

with the nonlinear solutions provided by the widely-used
equilibrium codes VMEC [17] and NSTAB [18]. Both
employ a numerical representation for B that guarantees
nested flux-surfaces; whereas, for ∆ι- = 0, as was consid-
ered in Refs.[15, 16], the discontinuity in the linear so-
lution means that the linearly-perturbed approximation
gives overlapping flux-surfaces; and it is no surprise that
the linear and nonlinear solutions disagree near the ratio-
nal surfaces. For ∆ι- > ∆ι-min, the linear solution gives
non-overlapping flux-surfaces and the perturbation ex-
pansion converges: the linear and nonlinear codes should
agree.

VMEC and NSTAB are, unfortunately, restricted
to work with smooth profiles and cannot formally com-
pute equilibria with discontinuous rotational-transform
(though finite radial-resolution may imply an ‘effective’
∆ι- [19]). The nonlinear equilibrium code SPEC [6] does
allow for discontinuities. Fig.1 compares the SPEC solu-
tion to the analytic, linear solution, with excellent agree-
ment. The nonlinear SPEC solution converges to the
linear solution with error ∼ O(ǫ2), as it should.

FIG. 1: Comparison of the analytic solution to the linearized
equation, Eq.(2), and the SPEC solution for a perturbed
cylindrical equilibrium, with ∆ι- > ∆ι-min, and for increas-
ing pressure. The RMP penetrates past the resonant surface
and is amplified by plasma pressure.
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