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A brief critique is presented of some different classes of magnetohydrodynamic equilibrium solu-
tions based on their continuity properties and whether the magnetic field is integrable or not. A
generalized energy functional comprised of alternating ideal and Taylor-relaxed regions is described,
and the Euler-Lagrange equations for extremizing states is presented. The equilibrium states are
globally continuous and smooth, and may be constructed for arbitrary three-dimensional plasma
boundaries and appropriately prescribed pressure-profiles.

A. introduction

A fundamental requirement for magnetically confining
plasmas for fusion research is to construct configurations
for which the macroscopic forces acting on the plasma are
balanced. The simplest, non-trivial equilibrium model
considers only the pressure-gradient and Lorentz forces,
and force balance is described by the differential equation

∇p = j × B, (1)

where ∇p is the pressure-gradient, j is the current-
density, j = ∇× B, and B is the magnetic field. This
equation is sometimes referred to as the ideal force-
balance equation, and it can be derived as the Euler-
Lagrange equation for states that minimize the plasma
energy functional under ideal variations [1–3]. The en-
ergy functional and it’s variations will be described in
detail below.

Despite the dramatic over-simplification of plasma dy-
namics, this equation is widely used to define the equilib-
rium. Indeed, it is because of the simplicity: accurate nu-
merical evaluations for simple plasma models are, under-
standably, faster than that of more complicated models,
and thus it becomes practical to compute the hundreds
of thousands of equilibria that are required for experi-
mental design optimization, equilibrium reconstruction
and so on, in strongly shaped, three-dimensional geome-
tries. Furthermore, if the macroscopic forces acting on
the plasma are not at least approximately balanced, then
there is little point in considering the microscopic forces.

Preferably, exact solutions should be elucidated that
can be approximated with standard numerical discretiza-
tions that are consistent with the mathematical structure
of the solutions, for which the numerical error will reli-
ably and predictably decrease with increasing numerical
resolution. As with all differential equations, boundary
conditions must be supplied to obtain a unique solution
(for sake of simplicity, this paper will ignore the possibil-
ity of bifurcations, for which two distinct solutions may
be found for the same boundary conditions). In fact, the
correct choice of boundary conditions is crucially impor-
tant in guaranteeing the existence of well-defined solu-
tions.

There are fundamental mathematical problems with
Eqn. (1) that are associated with the elliptic and hyper-
bolic characteristics [4, 5], which this paper will not ad-
dress. The mixed ideal-relaxed equilibrium model that
is introduced below will, in the “ideal regions”, avoid
the difficulties associated with the real characteristics by
following Betancourt & Garabedian [6] in assuming the

existence of nested toroidal flux surfaces, which allows
the equation B · ∇p = 0 to be immediately solved by
p = p(ψ), where ψ labels the enclosed toroidal flux. In
the “relaxed” regions, attention will be restricted to a
subset of solutions of Eqn. (1), namely linear force-free
fields that satisfy ∇ × B = µB for constant µ, and the
assumption of nested surfaces is not required.

This paper shall restrict attention to the so-called
fixed-boundary case, for which the plasma boundary is
prescribed, herein assumed to be smooth, and for which
B · n = 0, where n is normal. It is, however, simple to
generalize the following to the free-boundary case, for
which a supporting “vacuum” field generated by currents
external to the plasma must be provided.

This paper shall also adopt what may be called the
“equilibrium” approach: the pressure, p(ψ), is to be pro-
vided and is required to not change during the calcula-
tion. Depending on the particular class of equilibrium to
be constructed, at least one other profile function must
usually be provided, such as the parallel current-density,
µ(ψ), or the rotational-transform, ι-(ψ). The equilibrium
calculation is then to determine the magnetic field that
satisfies force balance and is consistent with the given
plasma boundary and the given profiles. Note that, typ-
ically, if the parallel current-density is specified a priori,
then the rotational-transform is only known a posteori,
and vice-versa.

The equilibrium approach is in contrast to, for ex-
ample, what may be called the “transport” approach,
whereby an initial pressure and magnetic field both evolve
dynamically in time (or iteratively) according to, for
example, the resistive, extended magnetohydrodynamic
(MHD) equations [7, 8] towards what might be called a
resistive, or “Ohmic”, steady state [9–12]. (See also the
simulated annealing method advanced by Furukawa &
Morrison [13], which advances an initial state according
to a modified set of equations derived from reduced MHD
with constrained Casimirs.) For example, the pressure
might be allowed to evolve according to an anisotropic
diffusion law, which is effectively a transport equation.
The transport approach certainly has merit and can in-
clude additional, non-ideal physics; but, it does not easily
lend itself towards constructing an equilibrium state with
a given pressure.

Eqn. (1) implies B · ∇p = 0, so that the pressure is
constant along each magnetic fieldline. This constraint
has important consequences: the pressure, which is an
“input”, is intimately related to the magnetic field, which
is an “output” of the numerical calculation. A necessary
feature of equilibrium codes is to appropriately constrain
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the magnetic field to ensure that intact magnetic flux
surfaces coincide with the prescribed pressure-gradients:
an equilibrium code that solves ideal force-balance must

constrain the topology of the field to be consistent with
the given pressure.

B. different classes of solution

By restricting attention to axisymmetric configura-
tions with a rotational symmetry, ∇p = j × B reduces
to the Grad-Shafranov equation [14, 15]. The ignorable
coordinate guarantees the existence of solutions with in-
tegrable magnetic fields. Here, the word “integrable”
is used in the dynamical systems context [16] to refer
to magnetic fields with a continuously nested family of
“flux” surfaces that remain invariant under the magnetic
fieldline flow. Arbitrary smooth functions for the pres-
sure and current-density profiles, for example, may be
admitted.

Hereafter, this paper will consider “three-dimensional”
case, for which the plasma boundary does not have a con-
tinuous symmetry/ignorable coordinate, and for which
the magnetic field may or may not be integrable, de-
pending on whether δ-function current-densities (i.e.,
sheet-currents) are admitted or not. Identifying com-
putationally tractable, physically acceptable solutions
is much more complicated than in the two-dimensional
case. Since the early days of research into magnetically
confined plasma it was recognized that MHD equilibrium
states may be “pathological” [17]. The are several prob-
lems that must be addressed, depending on the class of
solution that one seeks.

Possible solutions can be categorized as being ei-
ther continuous or discontinuous, either smooth or not
smooth, and with either integrable or non-integrable
magnetic fields. Identification of the continuity prop-
erties of the solution is crucial, as it determines which
numerical discretizations may be employed. The conti-
nuity properties of the solution to a differential equation
are partly determined by the continuity properties of the
supplied boundary conditions. To obtain smooth solu-
tions, the pressure and rotational-transform must also
be smooth, but this is not sufficient: it is also required
to ensure that any singularities that may be present in
the differential equation are avoided.

continuous pressure, continuous non-integrable field

It seems reasonable to seek three-dimensional solu-
tions with a continuous, smooth pressure and a contin-
uous, smooth magnetic field. Being analogous to 11
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mensional Hamiltonian systems [18], continuous, smooth,
three-dimensional magnetic fieldline flows with shear are
typically non-integrable [19, 20], possessing a fractal mix
of (i) invariant surfaces known as KAM surfaces [21, 22],
which have “sufficiently irrational” rotational-transform,
(ii) magnetic islands, which appear where the rotational-
transform is rational, and (iii) chaotic “irregular” field-
lines, which are associated with the unstable manifolds
of the periodic fieldlines and ergodically fill a highly
non-trivial volume. (Note that a magnetic vector field
may be a smooth function of position, B(x + δx) ≈

B(x) + ∇B(x) · δx, but the magnetic fieldlines may be
chaotic/irregular.) From B · ∇p = 0, it follows that any
non-trivial, continuous pressure consistent with such a
field must also be fractal, with ∇p = 0 across the chaotic
volumes and with non-zero, finite pressure-gradients at
a non-zero measure of KAM surfaces; but, the KAM
surfaces nowhere densely fill a finite volume, and thus
an uncountable infinity of discontinuities in the pressure-
gradient must arise. Solutions with an infinity of discon-
tinuities are, however, intractable from a numerical per-
spective. Discontinuities in the pressure-gradient drive
discontinuities in the current-density, and the magnetic
field is not smooth.

Given an arbitrary, non-integrable magnetic field, it
is a highly non-trivial problem to determine the fractal
topological structure of the magnetic fieldlines. Which ir-
rational surfaces survive three-dimensional perturbations
depends in part on how “irrational” is the rotational-
transform and how the system is perturbed from integra-
bility. Individual KAM surfaces can be identified (with
significant computational cost) using Greene’s residue
criterion [23]; however, no-one has yet, to the authors’
knowledge, described how to determine the measure of
phase-space that is occupied with KAM surfaces for a
given, non-integrable field.

However, it is the inverse of this task that is required
for the equilibrium approach: one must first provide a
continuous pressure-profile with a fractally discontinuous
gradient, and then appropriately constrain the represen-
tation of the non-integrable magnetic field to be topologi-
cally consistent with this given profile, i.e., to ensure that
the flux surfaces coincide with the pressure-gradients.

It is quite difficult to work with explicity fractal func-
tions. For example, consider the pressure-gradient pro-
file defined by the Diophantine condition, which plays a
prominent role in KAM theory and thus also in deter-
mining the structure of non-integrable magnetic fields,

p′(x) =

{

−1 , if |x − n/m| > d/mk, ∀n,m,
0 , otherwise,

(2)

where d > 0 and k ≥ 2. The pressure-gradient is zero in
a non-zero neighborhood of all rationals, x = n/m. This
is not Riemannian-integrable. A standard discretization
to compute the pressure on axis, with p(1) = 0, given by

p(0) =
∑N

i=1 p′(xi)∆x, where xi = i/N and ∆x = 1/N ,
fails spectacularly, as do higher-order quadratures that
are based on regular grids.

To approximate such “fractal” equilibria with non-
integrable magnetic fields, a more reliable approach
is to first provide a well-defined, non-fractal equilib-
rium, by specifying well-defined, non-fractal pressure
and rotational-transform profiles that can be treated
with standard discretizations to arbitrary accuracy; and
then to consider the limiting properties of a sequence
of well-defined equilibria as the pressure and rotational-
transform profiles approach fractals.

continuous pressure, continuous integrable field

An alternative is seek solutions with a continuous,
smooth pressure and continuous, smooth, integrable

magnetic fields [24, 25]. Such fields, having continu-
ously nested flux surfaces, it would seem, are consistent
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with smooth pressure and transform profiles; however,
unphysical currents arise near the rational rotational-
transform surfaces.

The perpendicular current-density consistent with
Eqn. (1) is j⊥ = B ×∇p/B2. By enforcing ∇ · j = 0,
with j = σB + j⊥, a magnetic differential equation then
determines the parallel current, B · ∇σ = −∇ · j⊥.
Magnetic differential equations are densely singular,
and thus are intractable numerically. For integrable
fields, straight fieldline coordinates, x(ψ, θ, ζ), can be
constructed and the magnetic field can be written
B = ∇ψ ×∇θ + ι-(ψ)∇ζ ×∇ψ. The Fourier harmonics
of σ must satisfy [26]

σm,n =
i(
√

g∇ · j⊥)m,n

x
+ ∆m,nδ(x), (3)

where ∆m,n is an as-yet undetermined constant and
x(ψ) ≡ mι-(ψ) − n. The Jacobian satisfies 1/

√
g = B·∇ζ.

The δ-function current-density is just a mathemati-
cal approximation of localized currents, and is accept-
able in a macroscopic, ideal, perfectly conducting, MHD
model. (The current-density associated with a finite cur-
rent passing along a very thin strand of super-conducting
wire, for example, is extremely well-approximated by a
δ-function.) Including δ-functions in the current-density
will result in a non-smooth magnetic field.

The 1/x singularity is far more problematic. For
a special choice of straight fieldline angles, namely
Boozer coordinates [27, 28], the magnetic field may be
written B = β(ψ, θ, ψ)∇ψ + I(ψ)∇θ + G(ψ)∇ζ, so that
1/B2 =

√
g/(G + ι-I), and

(
√

g∇ · j⊥)m,n =
p′
√

g
m,n

(nI − mG)

G + ι-I
. (4)

The magnitude of
√

g
m,n

may be considered to be an

“output” quantity: it is determined by the geometry of,
and the tangential magnetic field on, the rational sur-
faces, both of which are determined by the magnetic field.
For an arbitrary boundary, there is no apparent a priori

control over this quantity.
Assuming the pressure satisfies p(x) ≈ p + p′x +

p′′x2/2+. . . , the current through a cross-sectional surface
bounded by x = ǫ and x = δ, and θ = 0 and θ = π/m,
associated with the resonant harmonic of the parallel
current-density described by Eqn. (3) is

− 2

m

i(nI − mG)

(G + ι-I)

p′
√

g
m,n

ι-′
(ln δ − ln ǫ), (5)

where all terms are evaluated at the rational surface.
This approaches infinity as ǫ approaches zero.

This shows that there are cross-sectional surfaces close
to every rational surface through which the total cur-
rent is infinite, and this is unphysical. To guarantee such
problems are avoided, and assuming that there are no re-
strictions on

√
g

m,n
, the pressure-gradient must be zero

on each rational surface. The next order term for the cur-
rent through the cross-sectional surface is proportional to
p′′(δ − ǫ), and so we must require that p′′ < ∞. For any
system with shear the rational surfaces densely fill space,
and so either the pressure-profile is trivial, with p′ = 0
everywhere, or the pressure-gradient must be discontin-
uous.

FIG. 1: Piecewise-constant, discontinuous pressure-profile
(above), and discretely defined, strongly irrational rotational-
transform profile (below), with some low-order island chains
for illustration.

There is another possibility: rather than flattening
the pressure to avoid the logarithmic infinities in the
parallel current, one may restrict attention to so-called
“healed” configurations, for which the resonant harmonic
of the Jacobian,

√
g

m,n
, vanishes at each resonant sur-

face [29–31]. Such a condition could only be satisfied
for a restricted class of three-dimensional plasma bound-
aries; and this is inconsistent with our stated goal of
constructing force balance solutions for arbitrary three-
dimensional boundaries.

There is another problem with ideal-MHD equi-
libria with integrable magnetic fields and rational
surfaces, which is frequently over-looked: the so-
lutions are not analytic functions of the boundary.
The equation describing the first-order plasma dis-
placement, under the constraints of ideal-MHD, in-
duced by a small deformation to the boundary is
L0[ξ] ≡ δj[ξ] × B + j × δB[ξ] −∇δp[ξ] = 0. (Expres-
sions relating the perturbed field, δB, and pressure, δp,
to ideal plasma displacements are given below.) As dis-
cussed by Rosenbluth et al. [32], this is a singular equa-
tion, and the perturbed surfaces overlap and perturba-
tion theory breaks down. The problem of non-analyticity
lead Rosenbluth et al. [32] to implement a nonlinear
treatment of 3D “kink” states, and this analysis has
recently been revisited in the context of understanding
the effect of resonant magnetic perturbations (RMPs) in
tokamak plasmas [33].
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discontinuous pressure, discontinuous non-integrable
magnetic field

Discontinuities in the solutions to differential equations
are not a problem per se. Well-defined equilibrium solu-
tions with a finite number of discontinuities have been
introduced. In 1996, stepped-pressure equilibrium states
were introduced by Bruno & Laurence [34], and theo-
rems were provided that guarantee the existence of such
equilibria, provided the three-dimensional deviation from
axisymmetry was sufficiently small. These configurations
were recognized as extrema of the multi-region, relaxed
MHD (MRxMHD) energy functional that was later intro-
duced by Dewar and co-workers [35–39]. Example pro-
files are shown in Fig. 1.

Stepped-pressure equilibria can be thought of as be-
ing comprised of a finite number of nested Taylor states
[40, 41], in each of which the pressure is flat and the
field satisfies a Beltrami equation, ∇× B = µB with con-
stant µ. The constraints of ideal-MHD are not contin-
uously enforced — and this eliminates the problem of
non-analyticity at the rational surfaces — and the mag-
netic field may reconnect: the topology is not constrained
and magnetic islands will generally open at resonances,
and where islands overlap fieldline chaos can emerge. For
such “irregular” fieldlines, the rotational-transform is not
well-defined.

The discontinuities in the pressure in the stepped-
pressure equilibria coincide with a finite set of “ideal-
interfaces”, with strongly irrational rotational-transform,
that separate adjacent Taylor states. (Strongly irrational
numbers may, for example [38], be simply expressed as

ι- = (p1 + γ p2)/(q1 + γ q2), where γ = (1 +
√

5)/2 is
the golden mean and p1/q1 and p2/q2 are neighboring
rationals [20].) On these interfaces, the magnetic field is
constrained to remain tangential, and the discontinuities
in the pressure are balanced by discontinuities in the field
strength, so that the “total pressure”, P ≡ p + B2/2, is
continuous across the Ii. The existence of tangential dis-
continuities in B implies the existence of sheet-currents.
Stepped-pressure states, or MRxMHD states as they are
also called, are almost-everywhere relaxed but include a
discrete set of (zero-volume) ideal interfaces.

continuous pressure, discontinuous integrable magnetic field

Another class of discontinuous solutions, which are
globally ideal, was introduced recently by Loizu, Hudson
et al. [42], namely stepped-transform equilibria: equilib-
ria with continuously nested flux surfaces with discontin-
uous rotational-transform. These were introduced after
investigations [43] into the 1/x and δ-function current-
densities in ideal-MHD equilibria with integrable fields
revealed the necessity to enforce infinite shear, ι-′ = ∞,
at the rational surfaces in order to obtain consistent
solutions. Effectively, the rational surface is removed
from the equilibrium, and the non-integrable current-
densities are avoided. Stepped-transform states can self-
consistently support globally smooth, arbitrary pressure-
profiles. Removing the rational surfaces also removes the
problem of non-analyticity, provided the discontinuities
in the rotational-transform across the rationals exceeds a
minimum value — the sine qua non condition [42] — for

FIG. 2: Arbitrary, smooth pressure-profile (above),
and piecewise-constant, strongly irrational, discontinuous
rotational-transform profile (below). No island chains are ad-
mitted.

which analytic estimates were provided. The discontinu-
ities in the rotational-transform imply discontinuities in
the tangential magnetic field, and so sheet-currents must
also exist in these solutions.

The original investigation [42] of these stepped-
transform states was restricted to cylindrical geometry,
with only one resonant deformation, and so only one ra-
tional surface was of concern, and so only one discon-
tinuity in the rotational-transform profile was required
to eliminate the pathologies. In the general case with
an arbitrary three-dimensional boundary, every rational
surface would generally result in unphysical currents. For
arbitrary boundaries, it is easy to generalize the concept
to define equilibria with piecewise-constant rotational-
transform, for which the rotational-transform is every-
where strongly irrational, and for which there is a fi-
nite collection of discontinuities/sheet-currents. Exam-
ple profiles are shown in Fig. 2.

Both the stepped-pressure and the stepped-transform
classes of equilibria possess sheet-currents and discontin-
uous magnetic fields. This is acceptable within a macro-
scopic, ideal MHD context; and also from a mathemat-
ical perspective, as a finite set of discontinuities is easy
to accommodate numerically. The discontinuities in the
magnetic field may create difficulties for subsequent cal-
culations, gyrokinetic calculations of transport for exam-
ple.

In this paper, a new class of well-defined, numeri-
cally tractable, non-fractal equilibria that allow for non-
integrable magnetic fields is introduced that are continu-

ous and smooth, i.e. for which there are no sheet-currents.
These states are a combination of the piecewise-constant
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rotational-transform equilibria with nested flux surfaces
and smooth pressure-profiles, and the piecewise-constant
pressure equilibria with, generally, magnetic islands and
chaotic fieldlines.

C. combined ideal-relaxed energy functional

The new equilibrium states are comprised of alternat-
ing ideal and relaxed regions and are extrema of the
mixed ideal-relaxed energy functional. Restricting at-
tention to toroidal configurations, the plasma volume is
partitioned into N sub-regions, Ri, i = 1, .., N , and we
denote the toroidal boundaries separating the sub-regions
by Ii. The magnetic axis (or axes) lies in R1, which is a
toroid and is bounded by I1. For i = 2, .., N the Ri are
annular, and ∂Ri = Ii−1 ∪ Ii. The outermost boundary,
IN , is coincident with the plasma boundary. On each of
the Ii the magnetic field is constrained to be tangential,
B · n = 0. In each Ri, the plasma energy [2] is

Wi ≡
∫

Ri

(

p

γ − 1
+

B2

2

)

dv. (6)

The equilibrium states minimize Wi in each volume with
respect to variations in the pressure and the magnetic
field, but with suitable constraints imposed so as to avoid
trivial solutions, and with respect to deformations in the
internal boundaries, i.e. the Ii for i = 1, N − 1.

In the ideal regions we restrict attention to integrable
magnetic fields, with nested flux surfaces, which may
be labeled by the enclosed toroidal flux. The equa-
tion of state, dt(p/ργ) = 0, where dt ≡ ∂t + v · ∇ and
v is the “velocity” of an assumed plasma displace-
ment, v = ∂tξ, may be combined with mass conserva-
tion, ∂tρ + ∇ · (ρv) = 0, to obtain an equation that re-
lates the ideal variation in the pressure to the plasma
displacement, δp = (γ − 1) ξ · ∇p − γ∇ · (p ξ). Varia-
tions in the magnetic field are related to ξ by Fara-
day’s law, ∂tB = ∇× E, and the ideal Ohm’s law,
E + v × B = 0, where E is the electric field, and we write
δB = ∇× (ξ × B). Note that this last constraint does
not allow the topology of the field to change. The first
variation of Wi is

δWi =

∫

Ri

(∇p− j×B) · ξ dv−
∫

∂Ri

(p + B2/2) ξ · ds. (7)

In the Taylor-relaxed regions, the variations in the field
and pressure are not related to (internal) plasma displace-
ments. The mass and entropy constraints do not apply to
individual fluid elements but instead to the entire volume,
and the constraint on the pressure is piV

γ
i = ai, where

Vi is the volume of Ri and ai is a constant. The inter-

nal energy in Ri is
∫

Ri

pi/(γ − 1) dv = aiV
(1−γ)
i /(γ − 1),

and the first variation of this due to a deformation, ξ,
of the boundary is −p

∫

∂Ri

ξ · ds. The variation of the

magnetic field is arbitrary, δB = ∇× δA, except for (i)
constraints on the enclosed toroidal and poloidal fluxes,
Ψt,i ≡

∫

P
A · dl and Ψp,i ≡

∫

T
A · dl, where P and T are

suitable poloidal and toroidal “loops”; and (ii) conserva-
tion of the global helicity in each relaxed region,

Hi ≡
∫

Ri

A · B dv, (8)

and (iii) the constraint that B · n = 0 on ∂Ri. Much
can be said about the helicity constraint [40, 41, 44, 45],
and we refer the interested reader to the recent paper by
Moffat [46].

The flux constraints can be enforced by constraining
the representation for the vector potential, and the helic-
ity constraint can be enforced by introducing a Lagrange
multiplier, µ. The constrained energy functional in the
relaxed regions is

Fi ≡ Wi −
µ

2
(Hi − Hi,0) (9)

Note that if Ri is the innermost, toroidal region, the
poloidal flux is not defined and only the constraints on
the helicity and toroidal flux are required. The first vari-
ation is

δFi =

∫

Ri

(∇×B−µB)·δA dv−
∫

∂Ri

(p+B2/2) ξ·ds, (10)

where A = ξ × B on the Ii has been used.
The total constrained energy functional for the ideal-

relaxed plasma is

F ≡
∑

i∈I

Wi +
∑

j∈J

Fj , (11)

where, for example, I ≡ {1, 3, 5, . . . } and
J ≡ {2, 4, 6, . . . }, which makes the innermost vol-
ume an ideal region. Alternatively, a relaxed region may
be assumed for the innermost volume, in which case
I ≡ {2, 4, 6, . . . } and J ≡ {1, 3, 5, . . . }.

The Euler-Lagrange equations for extremizing states
are as follows: in the ideal regions we have ∇p = j × B, in
the relaxed regions we have p = const. and ∇× B = µB,
and across the Ii we have [[p + B2/2]] = 0. Note that
fields that satisfy ∇× B = µB also satisfy ∇p = j × B,
somewhat trivially, with ∇p = 0, so these mixed ideal-
relaxed states globally satisfy ∇p = j × B.

Having presented a combined ideal-relaxed energy
functional and derived the Euler-Lagrange equations gov-
erning extremal states, there are some subtleties concern-
ing the prescribed pressure and rotational-transform that
must be addressed to eliminate the formation of sheet-
currents. We seek solutions that are globally smooth; so
the pressure and the pressure-gradient in each ideal re-
gion at each Ii must match that in the adjacent relaxed
regions, where the pressure-gradient is zero. To avoid
the non-integrable current-densities described above, ra-
tional surfaces must be avoided in the ideal regions; so in
the ideal regions we restrict attention to magnetic fields
of the form B = ∇ψ ×∇θ + ι-i∇ζ ×∇ψ, where ι-i is a
strongly irrational constant.

Because of the possibility of reconnection and the for-
mation of islands and irregular fieldlines, the rotational-
transform may not be globally defined in the relaxed re-
gions. It is well-defined on the Ii, which, because of the
constraint B · n = 0, remain as intact flux surfaces. How-
ever, if the Beltrami field is to be defined by prescribing
the enclosed toroidal and poloidal fluxes and the helicity,
the rotational-transform on the Ii is a priori unknown,
and must be computed a posteori: we cannot a priori

guarantee that an initial selection for ∆ψt,i, ∆ψp,i and Hi

is consistent with the existence of continuous rotational-
transform across the Ii. It will generally be required



6

FIG. 3: Globally smooth, locally flattened pressure-profile
(above), and piecewise-constant strongly irrational, piecewise-
a priori-unknown rotational-transform profile (below). Is-
lands are only allowed in the relaxed regions.

iterate on the parallel current-density — more formally,
to iterate on ∆ψp,i and Hi,0 — in the relaxed regions
to obtain the desired (single-valued) rotational-transform
profile on the adjacent Ii.

We thus have described an equilibrium with a glob-
ally smooth pressure-profile with “flattening” across the
rational surfaces, and with a piecewise-flat, piecewise-
a priori-unknown rotational-transform profile. Smooth
pressure-gradients are supported in the ideal regions,
which are filled with flux surfaces with a constant,
strongly irrational rotational-transform. Magnetic is-
lands and chaotic fieldlines are allowed in the relaxed
regions, in which the pressure-gradient is zero, the
rotational-transform may or may not be defined, and
j · B/B2 = µi is a constant. Example profiles are shown
in Fig. 3.

We make some brief comments regarding a possible
numerical construction that is a combination of the al-
gorithms already implemented in the VMEC [24, 25]
and SPEC [38] codes. In the ideal regions, given the
representation B = ∇ψ ×∇θ + ι-i∇ζ ×∇ψ, the numer-
ical task amounts to finding the coordinate interpola-
tion, x(ψ, θ, ζ), between the Ii that minimizes Wi. This,
crudely, is the approach adopted in VMEC [24, 25]. In
the relaxed regions, by using a suitable gauge for the
magnetic vector potential the magnetic can be repre-
sented as B = ∇× (Aθ∇θ + Aζ∇ζ), and the numerical
task amounts to finding the functions Aθ(s, θ, ζ) and
Aζ(s, θ, ζ) that extremize Fi, with suitable constraints
to enforce the boundary conditions that B ·n = 0 on the
Ii and the flux constraints, and where x(s, θ, ζ) is an ar-
bitrary coordinate interpolation between the Ii. This is

the approach adopted in SPEC [38]. After computing the
magnetic fields in each Ri, the geometry of the Ii must
be adjusted (and the fields in each region recomputed)
to satisfy continuity of the total pressure, P ≡ p + B2/2,
across the Ii.

FIG. 4: Similar to Fig. 3, but with NV = 129 ideal and relaxed
regions. The insets show the detailed structure.

This paper does not consider whether continuous,
smooth solutions introduced herein are preferable to the
discontinuous solutions with sheet-currents. Ultimately,
the question which class of equilibrium best models ex-
perimental observations may, ultimately, only be an-
swered by experimental validation, i.e., to determine
which class of equilibrium best fits the experimental data.
Towards this goal of validation, it is certainly interesting
to note that the pressure-profile shown in Fig. 3 bears a
striking resemblance to pressure-profiles constructed by
Ichiguchi et al. [47, 48], who demonstrated that equi-
libria with flattened pressure across the rational surfaces
seems to account for some experimental observations in
the LHD experiment.

The smooth solutions can approximate both the solu-
tions with discontinuous pressure and the solutions with
discontinuous rotational-transform, simply by letting the
volume of the ideal or relaxed regions reduce to zero
as desired. This can be enforced by constraining the
toroidal flux in the appropriate regions.

Also, the number of volumes can become arbitrarily
large. In practice, any acceptable pressure and transform
profiles can be well approximated. Examples of what
appear to be “fractal” profiles are shown in Fig. 4.

We may expect that there will be a minimum allowed
value for the jumps in the rotational-transform across the
relaxed volumes that are similar to the sine qua non con-
dition described by Loizu, Hudson et al. [42]. This condi-
tion is required to ensure that linear perturbation theory
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does not result in overlapping geometry, i.e., that the
solutions are analytic functions of the three-dimensional
boundary. We intend to explore this in future work.
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