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A. Gyro-motion across a field discontinuity

An important assumption used for gyro-kinetics is that
the equilibrium (background) magnetic field is smoothly
varying compared to the length scale of the Larmor ra-
dius of the gyro-motion. Many authors have studied gyro-
kinetics in ideal-MHD equilibria in stellarator geometry,
assuming continuous and smooth pressure and rotational-
transform profiles; however, recent work [1] has shown that
in three-dimensional (3D) geometry, ideal-MHD equilibria
with nested flux-surfaces must have magnetic fields with
tangential discontinuities at the rational flux-surfaces in
order to eliminate unphysical parallel currents. Most of
the work on gyrokinetics in stellarators is thus question-
able.

We may consider a simplified Cartesian, slab geom-
etry, with a magnetic field given by Bz(x, y, z) = 0,
By(x, y, z) = 1, and

Bx(x, y, z) =

{

f(z) − 1

2
∆ι-, for z < 0,

f(z) + 1

2
∆ι-, for z > 0,

(1)

for some smooth function f(z). The discontinuity in the
tangential field is ∆ι-. (If this field is too simple, we can add
some other terms to give appropriate drifts as required.)

Consider a particle that is drifting radially. Away from
the discontinuity, the particle motion is accurately de-
scribed by taking a gyro-average to simplify the numerics,
and this is what all major particle codes do. However, the
gyro-average is not valid near the discontinuity because
the scale length of the variation in the field strength is,
being zero, smaller than the gyro-radius. We can, how-
ever, follow the exact particle motion, even though this
requires more computational effort.

The question is: how does the presence of a discontinu-
ity in the tangential field affect particle motion; can meth-
ods that exploit the gyro-average still be used; is there
a “correction term” that is required to make the gyro-
averaging treatments accurate, does the correction term
depend on ∆ι-?

The Larmor radius on one side of the discontinuity
will be larger on one side than the other, and I think
we will find interesting behaviour in the particle motion
near the discontinuity. All numerical codes that follow
particle motion in 3D, ideal-MHD equilibria that exploit
the gyro-average should carefully treat the particle mo-
tion across the current singularities (and accompanying
tangential discontinuities) that are inherent in ideal-MHD
equilibria.

FIG. 1: Flux-surfaces of toy Hamiltonian.

B. Action-angle coordinates for a simplified

tokamak Hamiltonian

Single-null tokamaks have a magnetic field structure
similar to

H =
1

2
q2 + 2p3 + 3p2, (2)

which is shown in Fig. 1. It would be very useful for a
variety of purposes to construct action-angle coordinates
for this Hamiltonian, which approximate straight fieldline
coordinates for tokamaks. The methods for constructing
action-angle coordinates are described in text books on
classical mechanics. The only complexity arises is that
various elliptic integrals are required. Double-null toka-
maks can be similarly approximated by suitably including
a p4 term in Eq. (2). With a little thought, it would be
possible to also construct simplified Hamiltonians for stel-
larators, such as the recently-constructed W7-X stellarator
that has an island chain as a divertor.

The usefulness of constructing action-angle coordinates
for the simplied Hamiltonians is that much of the com-
putational difficulties in treating the separatrix region of
tokamaks and stellarators is because of the singularity in
straight fieldline coordinates, and by constructing action-
angle coordinates for toy Hamiltonians with the same sep-
aratrix structure, the coordinate singularity can be treated
analytically rather than numerically.
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C. Shafranov shift in knotatrons

In addition to tokamaks and conventional stellarators,
there is the recently-discovered knotatron [2] class of
confinement device (actually re-discovered: knotted con-
finement devices were first considered theoretically by
Solov’jov & Shafranov, 1967 [3]). A knotatron, shown in
Fig. 2, is a closed, topologically-toroidal device with the
magnetic axis in the shape of a knot; and is a possible,
new fusion concept.

By expanding an arbitrary equilibrium about the mag-
netic axis, analytic expressions for the MHD equilibrium
can be derived (see most textbooks on plasma physics,
e.g. [4]). Expressions for the Shafranov shift have already
been derived for tokamaks and stellarators. What is the
expected Shafranov shift in a knotatron? This can be com-
pared to the Shafranov shift for tokamaks and stellarators,
and analytic approximations for the equilibrium can later
be used to benchmark MHD equilibrium codes in knot-
ted geometry. (The SPEC code [5] has been modified to
accomodate knotted geometry, though some work will be
required by Dr. S.R. Hudson to update this capability.)
Following Solov’jov & Shafranov, 1967 [3], we may derive
expressions for the linear, ideal stability etc.

FIG. 2: (color) A trefoil-knotatron: 36 circular, 33cm-radius
coils, each with unit current, produce a magnetic field with an
axis in the shape of a trefoil knot. The color indicates |B| on
a flux-surface.
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