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Some possible research projects are described.

A. Gyro-motion across a field discontinuity

An important assumption used for gyro-kinetics is that
the equilibrium (background) magnetic field is smoothly
varying compared to the length scale of the Larmor ra-
dius of the gyro-motion. Many authors have studied gyro-
kinetics in ideal-MHD equilibria in stellarator geometry,
assuming continuous and smooth pressure and rotational-
transform profiles; however, recent work [1] has shown that
in three-dimensional (3D) geometry, ideal-MHD equilibria
with nested flux-surfaces must have magnetic fields with
tangential discontinuities at the rational flux-surfaces in
order to eliminate unphysical parallel currents. Most of
the work on gyrokinetics in stellarators is thus question-
able.

We may consider a simplified Cartesian, slab geom-
etry, with a magnetic field given by B*(z,y,z) = 0,
BY(z,y,z) =1, and

1 .
}C(Z) gﬁe, for z < 0, (1)

¢, for z > 0,

for some smooth function f(z). The discontinuity in the
tangential field is As. (If this field is too simple, we can add
some other terms to give appropriate drifts as required.)

Consider a particle that is drifting radially. Away from
the discontinuity, the particle motion is accurately de-
scribed by taking a gyro-average to simplify the numerics,
and this is what all major particle codes do. However, the
gyro-average is not valid near the discontinuity because
the scale length of the variation in the field strength is,
being zero, smaller than the gyro-radius. We can, how-
ever, follow the exact particle motion, even though this
requires more computational effort.

The question is: how does the presence of a discontinu-
ity in the tangential field affect particle motion; can meth-
ods that exploit the gyro-average still be used; is there
a “correction term” that is required to make the gyro-
averaging treatments accurate, does the correction term
depend on A¢?

The Larmor radius on one side of the discontinuity
will be larger on one side than the other, and I think
we will find interesting behaviour in the particle motion
near the discontinuity. All numerical codes that follow
particle motion in 3D, ideal-MHD equilibria that exploit
the gyro-average should carefully treat the particle mo-
tion across the current singularities (and accompanying
tangential discontinuities) that are inherent in ideal-MHD
equilibria.
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FIG. 1: Flux-surfaces of toy Hamiltonian.

B. Action-angle coordinates for a simplified
tokamak Hamiltonian

Single-null tokamaks have a magnetic field structure
similar to

1
H= §q2 + 2p% + 3p?, (2)

which is shown in Fig. 1. It would be very useful for a
variety of purposes to construct action-angle coordinates
for this Hamiltonian, which approximate straight fieldline
coordinates for tokamaks. The methods for constructing
action-angle coordinates are described in text books on
classical mechanics. The only complexity arises is that
various elliptic integrals are required. Double-null toka-
maks can be similarly approximated by suitably including
a p? term in Eq. (2). With a little thought, it would be
possible to also construct simplified Hamiltonians for stel-
larators, such as the recently-constructed W7-X stellarator
that has an island chain as a divertor.

The usefulness of constructing action-angle coordinates
for the simplied Hamiltonians is that much of the com-
putational difficulties in treating the separatrix region of
tokamaks and stellarators is because of the singularity in
straight fieldline coordinates, and by constructing action-
angle coordinates for toy Hamiltonians with the same sep-
aratrix structure, the coordinate singularity can be treated
analytically rather than numerically.



C. Shafranov shift in knotatrons

In addition to tokamaks and conventional stellarators,
there is the recently-discovered knotatron [2] class of
confinement device (actually re-discovered: knotted con-
finement devices were first considered theoretically by
Solov’jov & Shafranov, 1967 [3]). A knotatron, shown in
Fig. 2, is a closed, topologically-toroidal device with the
magnetic axis in the shape of a knot; and is a possible,
new fusion concept.

By expanding an arbitrary equilibrium about the mag-
netic axis, analytic expressions for the MHD equilibrium
can be derived (see most textbooks on plasma physics,
e.g. [4]). Expressions for the Shafranov shift have already
been derived for tokamaks and stellarators. What is the
expected Shafranov shift in a knotatron? This can be com-
pared to the Shafranov shift for tokamaks and stellarators,
and analytic approximations for the equilibrium can later
be used to benchmark MHD equilibrium codes in knot-
ted geometry. (The SPEC code [5] has been modified to
accomodate knotted geometry, though some work will be
required by Dr. S.R. Hudson to update this capability.)
Following Solov’jov & Shafranov, 1967 [3], we may derive
expressions for the linear, ideal stability etc.

FIG. 2: (color) A trefoil-knotatron: 36 circular, 33cm-radius
coils, each with unit current, produce a magnetic field with an
axis in the shape of a trefoil knot. The color indicates |B| on
a flux-surface.
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