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Abstract

It is shown that toroidal surfaces that extremize a properly weighted surface integral of the squared normal component of a
solenoidal three-vector field capture the local invariant dynamics, in that a field line that is anywhere tangential to the surface
must be confined to the surface everywhere. In addition to an elementary three-vector calculus derivation, which relies on a
curvilinear toroidal coordinate system, a coordinate-free geometric approach applicable to hypersurfaces (codimension-one

submanifolds) of manifolds of arbitrary dimension is sketched.

1. Introduction

In order to compute accurately the equilibrium, sta-
bility and transport properties of nonaxisymmetric
toroidal plasma containment devices such as stellara-
tors, or tokamaks with field ripple, it is important
to work in a curvilinear coordinate system such that
the magnetic field lines are as close as possible to be-
ing tangent everywhere to the nested toroidal level
surfaces of one of the coordinates. An exactly simi-
lar problem is that of constructing streamline coordi-
nates for nonaxisymmetric, stationary vortex flows in
incompressible fluids. If a surface can be found such
that the velocity field is everywhere tangential, then
the surface is invariant under the flow. If no suitable
invariant surface can be found, then we seek an al-
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most invariant surface. It is the purpose of this paper
to present a definition of “almost invariant” which
has the property of “capturing” sets that are invariant
under the flow.

It can be shown [1-3] that, given an arbitrary
curvilinear toroidal coordinate system, a “time”-
dependent, one-degree-of-freedom Hamiltonian can
always be constructed whose phase-space trajectories
correspond to the field lines of an arbitrary magnetic
field, with the generalized toroidal angle playing the
role of “time”. Thus the task of finding almost invari-
ant surfaces may also be viewed as a Hamiltonian
dynamics problem, though this paper will present the
problem mainly in terms of magnetic fields.

An integrable time-periodic Hamiltonian is one
whose phase-space trajectories all lie on invariant tori
(regarding time as a toroidal angle) so the dynamics
can be described using action—angle variables [4].
For a toroidal magnetic confinement system, integra-
bility is equivalent to the existence of nested mag-
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netic flux surfaces described by magnetic coordinate
systems (see, e.g., Ref. [5]).

However, when such a system is perturbed from
integrability, an attempt to reconstruct action-angle
variables runs into the small resonant denominator
problem of canonical perturbation theory [6]. No
longer can one assume the existence of nested flux
surfaces and the validity of magnetic coordinate sys-
tems is not guaranteed. Some comfort can be taken in
the Kolmogorov-Arnol’d-Moser (KAM) theorem,
which states that, under sufficiently small, smooth
perturbations, some invariant tori will remain. How-
ever other tori with irrational rotation number (rota-
tional transform in magnetic confinement parlance)
will break up into invariant Cantor sets, and those
with rational rotation number evaporate into islands
and chaotic trajectories, leaving only a finite set of
periodic orbits (closed field lines) as the invariant
remnants. Thus, although the assumption of nested
flux surfaces may be a good approximation in appro-
priate circumstances, a more generally satisfactory
theory of magnetic coordinates must face up to the
generic situation of nonintegrability.

An analogous problem occurs in the theory of area-
preserving twist maps. Several approaches to defin-
ing almost invariant rotational curves have been pro-
posed [7-10], with that of Meiss and Dewar [7,8] be-
ing the basis for the approach adopted in this paper.
Meiss and Dewar define an almost invariant surface
as one that extremizes the “quadratic flux”, being the
mean square vertical distance Ay between a trial curve
C, say, and its image 7TC under the area-preserving
twist diffeomorphism T : (x,y) — (x’,y’). They
show [7] from the Euler-Lagrange equation for ex-
trema of the quadratic flux that, if C and TC are
graphs over the coordinate x, then intersections of C
and TC (where Ay = 0) correspond to orbits under
the area preserving map. That is, if a point (x,y) is
onboth C and TC, then all its backward and forward
iterates are on both C and T'C. Since such orbits are
invariant sets, this principle has the desirable prop-
erty of capturing remnant local invariant dynamics,
including KAM surfaces if the orbit is dense on C.
The result can also be extended [8] to the case where
C and T C are not graphs, where there is ambiguity in
the meaning of “vertical distance”, but this complica-
tion has no counterpart in the continuous-time case
which is the subject of this paper.

The net flux, F, through a surface I (takentobe a
two-torus in R*) is defined by

]-‘E/B-dS, 1)

r

where dS denotes the vector surface element ndS,
with n being the outward unit normal at a point on
the surface I, and dS an element of surface area. In
the absence of sources (magnetic monopoles) within
the toroidal volume enclosed by I', F is identically
zero. That is, the escape flux carried by field lines
leaving the volume is exactly balanced by the return
flux carried by field lines entering the volume. Thus
we can define the escape flux, ¢, as

¢ = %/anms, (2)
r

where B, =B - n.

Consider a deformation of I” in a region where B,
is of one sign only, say positive, with the rest of I
held fixed. Then the return flux, from regions where
B, < 0, cannot change, and therefore the escape flux
cannot change either since they must balance. Thus
@, is left invariant by a wide class of variations of I’
and therefore does not form an appropriate objective
functional for optimizing the choice of I" by flux min-
imization. We are thus led, following Meiss and De-
war [7,8], to considering a second moment of |B;|.

We define the magnetic quadratic flux, ¢,, by

92 = %/w|B,,|2dS, (3)
r

where w is a positive weight function whose choice
will be found (see Eq. (16)}) to be restricted by con-
sideration of the Euler-Lagrange equation for surfaces
that extremize ¢,. Note that the magnetic energy as-
sociated with the normal component of the magnetic
field in a shell of infinitesimal thickness w dp (p being
a generalized radial variable with appropriate dimen-
sions) bounded by I is ¢, dn, so ¢, might perhaps be
better thought of as a line density of the energy in the
radial magnetic field rather than a flux.

We investigate the variational calculus of this func-
tional using two methods. The first approach, some-
what more traditional from a plasma physics perspec-
tive, is to use a curvilinear coordinate system. This
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1s developed in Section 2 where we also restrict the
choice of the weight function by considering the ex-
istence of solutions of the Euler-Lagrange equation,
and demonstrate the desirable property of solutions
that “capture” invariant dynamics.

The second, more general, way developed in Sec-
tion 3 is based on modern differential geometric tech-
niques. Both methods derive the same result for the
setting of I, a surface in ordinary three-space, but the
second method actually is valid in the more general
setting of I", a hypersurface of an arbitrary Rieman-
nian manifold.

2. Three-vector analysis

In this approach we take the toroidal surface I" to be
a member of a family of nested tori labelled by a con-
tinuous parameter 5. On each torus we set up general-
1zed poloidal and toroidal angles & and {, respectively,
so that any point in space, x, isgiven by x = r(s,0,{)
and I' isthe surface s = const. Then the contravariant
representation of any vector 4 is A°es + Aleq + A;e o
where e; = O;r, eg = 9pr and e; = 9;r, while the co-
variant representation is 4;Vs + 4o VO 4+ A: V(. The
unit normal »n is given by

Vs €y x e
= — = —, 4
Vsl = feo xed] “
and the vector surface area element by
dS = ep xe;d0d! = JVsded{, (5)

where the Jacobian 7 is defined by
T =(Vs-VOx V) ! = es-egx ey

We now consider variations in the surface I”, holding
the spatial dependence of the vector field B (x) fixed.
In the inverse representation in terms of (s, 8,{), we
vary the function r(s, 8,{), so that the variation in »
is given by

_ (Bgdr) x e; + eg x (J;6r)

on
leg x e¢|
_egxerdleg x e (6)
leg x ef?2
and the variation in |eg x e;| = (legx e¢|2) /?is given

by

5legxe5|
= [(Bgér) xXer+egx (6{5")] . (eg xe;)/|eg Xecl.
(7

Using Eqgs. (5)-(7) and integrating by parts with re-
spect to 6 and { we can now prove the lemmas, for
arbitrary scalar and vector point functions f/ and f,
respectively,

/fédS:—/dS(Sr(nxV)x(fn), (8)
T r

and

/de-én:—/dSJr-(nxV)xfs, )
T T

where f is the projection of f in the tangent plane
to I' at the point x = r(s,6,(),

fi=U-nn)-f. (10)

Here I is the idemfactor or unit tensor. (See Fig. 1
for the case f = B.) Note that, although we used a
curvilinear coordinate system to derive Egs. (8) and
(9), the equations themselves do not involve coordi-
nates, and allow us to calculate the variation of ¢; in
a coordinate-free manner.

It is actually easiest to consider first the more gen-
eral functional

<0=/f(x,n) ds. (11)
r

On using the two lemmas above and the identities
(Vn) . n=0,(Vf)-n=—(Vn)-fand Vf =
Af/0x + (Vn)-(8f/3n) we find the first variation

6(p=/ dSn-JrV-[(Z—i) +fn} (12)
r 3§

This depends only on n - Jr, as it should since varia-
tions of r within the surface correspond to relabelling
of the 6 and ( lines and leave the actual surface in-
variant. The Euler-Lagrange equation which makes ¢
stationary is

0
“E)e o
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r

Fig. 1. Ilustration of the decomposition of B at the point x on the surface I” into a component B, in the subspace spanned by
the unit normal, » and the projection B in the tangent plane, 77x. In this section x = r(s, 8,{), but the figure also illustrates
schematically the decomposition used for higher dimensional manifolds.

where ( )s denotes the surface projection defined by
Eq. (10).

If we take f = %B,f, corresponding to choosing
w = lin Eq. (3), Eq. (13) gives,onusing V-B = 0,
B;-VBy = 1B}V -n. (14)
On attempting to solve Eq. (14) by the method of
characteristics, i.e. by integrating along a “pseudo field
line” defined as a curve on I” such that B; is every-
where tangential to it, we immediately observe a fatal
problem - the right-hand side is > O (except perhaps
for tori with very small aspect ratio), so that B, must
increase monotonically along the pseudo field line.
Thus, if we start at a point where B, is positive, it will
blow up as we integrate further along the line, while
in the case of negative B, blowup will occur in the re-
verse direction along the line. We must therefore con-
clude that no stationary surfaces exist in general for
the quadratic flux defined with unit weight function.

One possibility for rectifying this situation might
be to use as w an x-dependent scalar (e.g. B?), but
this does not have the desired property of leading to
a driving term in the Euler-Lagrange equation that
vanishes or manifestly satisfies the solubility condi-
tion {11] for inverting the B; - V operator. Instead
we are led to introducing an auxiliary vector field C,
say, obeying the conditions

vV.-C=0, Ch=n-C>0 (15)

at least in a neighbourhood of the surface making ¢,
stationary. The choice of C will be discussed later.

We now take as weight function in Eq. (3)
w=Cy. (16)
Inserting f = B2/2C, in Eq. (13) and using the
divergence-free properties of B and C, we find the
Euler-Lagrange equation

B» B\ _
(2-Zc)-v(Z) =0

Since the right-hand side now vanishes, there is now
no problem with solvability of the partial differential
equation. Indeed we can immediately solve it by inte-
grating along the characteristic pseudo field lines de-
fined by the dynamical system on I,

(17)

.t = BS_ éﬁCS:

C (18)

with x being the derivative of x with respect to a
“time” variable with dimensions of length divided by
magnetic field. We assume that the vector field on the
right-hand side of Eq. (18) never vanishes, so that
there are no fixed points and the characteristics can-
not cross. The solution of Eq. (17) is just
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B,
ol const (19)

on a pseudo field line defined by Eq. (18).

Note that, if B, = 0 at some point, then it will
be zero on all points of the pseudo field line passing
through that point. Furthermore, this “pseudo” field
line will in fact be a real magnetic field line (orbit of
the dynamical system x = B). This is the direct ana-
logue of Theorem 1 of Dewar and Meiss [8]. An im-
mediate corollary is the invariance capture property:
The quadratic-flux-extremizing surfaces with w =
1/C, “stick to” any invariant structures such as closed
field lines (periodic orbits of x = B) and magnetic
surfaces (KAM tori — quasiperiodic orbits of x = B
covering a surface ergodically) that they touch.

Consider the case of a quadratic-flux-extremizing
surface containing a hyperbolic closed field line X
corresponding to the X-point of a magnetic island in
the return map defined on the Poincaré section { =
const. Now follow the sign of B, as we move along a
curve on I cutting the pseudo field lines transversely
and intersecting X twice. Since B, = 0 on X, and
Egs. (15) and (19) show that the sign of B, is con-
served on a pseudo field line, we see that the sign of
B, must change in the same sense on both crossings
of X. However, this means that B, must also change
sign somewhere in between the crossings of X. Hence
there must be at least one other closed field line O, say,
interleaved with X. Assuming that the island whose
(chaotic) separatrix is defined by the stable and un-
stable manifolds of X contains a single elliptic closed
field line (O-point in the Poincaré section) we iden-
tify O with this periodic orbit. An exactly analogous
result was also found in the area-preserving map case
(7,8].

The auxiliary divergence-free field C is somewhat
arbitrary, but if we are given poloidal and toroidal
angles #(x) and {(x) then a natural choice is C =
V0 x V¢, so that dS = d0d{/C, It is then appro-
priate to ask whether the choice of @ and { can be re-
stricted by requiring that ¢, be stationary under vari-
ations in 8 and {. Varying 8 and { in Eq. (3) with
w = 1/C, while holding I" fixed, we find

2n 2n

Bn n
S0y = /f deCa(50%+5C§Z)g-. (20)
00

Thus ¢, cannot be stationary under variations of the
angles unless B, /C, is constant on I", which is impos-
sible (unless B, = 0, in which case p, = 0). Thus we
conclude that the choice of angles must be made on
grounds other than pure quadratic flux minimization.
Other criteria might be numerical convenience, the
spectral condensation optimization of Hirshman and
Meier [12], or physical and mathematical grounds
such as those leading to Boozer coordinates [13].

3. General geometrical method

We now indicate how to generalize the above result
to manifolds of arbitrary dimension in an elegant,
coordinate free way by using the methods of mod-
ern differential geometry. Thus we consider an m-
dimensional hypersurface, I', of a general (m + 1)-
dimensional Riemannian manifold, N. (For the
plasma containment problem we take m equal to 2
and N simply a flat three-space.) We also require a
vector field B to be defined in a neighbourhood (at
least) of I within N and to be divergence free, i.e.
V-B=0.

An example of B in higher dimension might be
the vector field of a nondissipative dynamical sys-
tem, specifically a nonautonomous Hamiltonian sys-
tem, with N being the phase space and time, and with
a suitable metric chosen to provide the Riemannian
structure required for the present theory. Indeed the
magnetic field problem of the previous section pro-
vides an example if we treat it using the magnetic field-
line Hamiltonian approach [1-3]. Then the manifold
N has the structure of a two-torus (with coordinates
being a poloidal angle as generalized coordinate and
a toroidal angle as “time”) crossed with the positive
real line (corresponding to the toroidal flux function
as generalized momentum). In this case there is a nat-
ural metric, that giving the length in physical three-
space (although even here there is a certain arbitrari-
ness due to the necessity to introduce the auxiliary
field C).

The hypersurface I” inherits a Riemannian struc-
ture from that of NV and the unit normal n and volume
element dS are well defined in this structure. Thus
the quadratic flux ¢, is still well-defined by Eq. (3)
above.

We wish to derive the conditions (Euler-Lagrange
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%%

r

Fig. 2. Infinitesimal variation in surface I" produced by the vector field § during the interval in the parameter ¢, 0 to 0 + Jt.
It is seen that &t forms the generalization of the variation §r used in the three-vector formulation.

equations) under which ¢; will be stationary for all
smooth one-parameter families of (compactly sup-
ported) variations of I". We can generate such a fam-
ily, I}, by acting on I" with the local flow, @, € N,
produced by a vector field & (x) defined for all points
x € N in a neigbourhood of I'. That is, I; = &,(I"),
with 3:@,(x) = & (D:(x)) and with Dy(gx) = x, as
illustrated in Fig. 2. The vector field  is in the tan-
gent space of N but we require the transversality con-
dition that it be not (at least not entirely) in the tan-
gent space of I” when x is on I". We can now define a
one-parameter family of quadratic fluxes

92(1) = %/B,%ds,, (21)
I

so that the stationarity condition is ¢3(0) = 0. (We
have taken the weight function to be unity for simplic-
ity, though the same reasons for needing to generalize
this as were found in Section 2 will be found in the
general case as well.)

It is intuitively clear (and a standard result in the
area of geometric variations of geometric integrals,
see, €.8., Ref. [14]) that the first variation ¢5(0) will
only depend on the vector field & along I and not
on the extension of § in a neighbourhood of I, i.e.
only on the tangent vectors to the curves &;(x) at
t = 0,x € I'. It is also standard that the variation
vector field & can be taken to be normal to . This is
because any tangential component simply results in a
reparametrization of I; and leaves the quadratic flux
¢ invariant.

Thus

92(0) = 5(/6,(Bﬁ)ds+/333t(d5))
ha t=0

r

=/B,,-V¢B,,dS—% BiH -£dS, (22)

r r

where B, = B,n is the projection of B in the normal
direction (so B2 = B, - B,) and H is the mean cur-
vature of the hypersurface I in N, related to the unit
normal n by

H=-(V-n)n. (23)

Here we have extended » into a neighbourhood of I
in N by, for example, defining n(x) to be the unit
normal to I; with ¢ chosen so x is on [;.

The fact that the derivative of the surface element
is given by —(H - §)dS is a standard result of the
geometric calculus of variations. It is, for example, the
starting point for the theory of “minimal surfaces”.
The first term in Eq. (22) is a statement of one of
the defining relationships of Riemannian geometry,
namely that

Ix (Y . Z)=(VxY)-Z+Y: (VxZ), (24)

for all vector fields X, ¥ and Z in N. Here Vx means
the covariant derivative in the direction X (in R” it
is simply X - V) and the directional derivative Oy is
defined by

df (x(¢))
dt ’

t=0

Oxf)lx, = (25)
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where x(¢) is any smooth curve whose tangent vector
X' (0) atx(0) = xqis X (o). Again, in R", 8y is simply
X.v.

Since B, = (Bn,-a)nand{ = (£, - n)n,

By VeBy,= (Bh-n)(-n)n-Va\B, (26)

Using V - B = 0 we calculate n- V, B,. We calculate
using a locally defined set of orthogonal unit vectors

aey

to I". The tangential and normal components of B
are denoted B; and B, respectively, and are given by
B;=(B-e))e;and B, = (B-n)n. Then V-... =
e;i-(Ve, ...) +a-(V,...) (summation convention).

Using these expressions we have (strongly using the
orthogonality of the basis vectors)

V-B =e; -V Bs + (B,,-n)e,--V,,.n
+ (B-ej)n-Vae,+n-VaB, (27)

Then, using Eq. (23),

n-VaB, = —e,--V,,-Bs + (Bp-n)H -n
~{(B-e;))n-Vae. (28)

Now

n-(Vee;) = E-n)"'n-Vee,= (E-n) "'n- (V.E),
(29)

where, for computational convenience, we have ex-
tended the tangential basis {e;};-1, so that they re-
main tangential to I; for small ¢. Then Vze,— V., { =
[£,e;] is tangential.
Putting together Egs. (26)—(28) we have
Bn 'V{Bn - (Bn 'n)(f'")(Bn'n)H'"
~(By-n)(E-n)(By-e)(&-n)"'n-V. &
—{(Bn-n)(&-ne;: Ve,vBs
= |Bo|*H -& — (VB,&) - Bn— (€, Ve,Bs) (By-&).
(30)

Noting that

e -V, (§-B.)B; = (‘E‘Bn)ei'veiBs
+(VB;§)'Bn +§'VBan (31)

we have

By -VeB, = |Bu’H -& + (Vg B,) &
—e;+Ve (§-Bn)B;. (32)

Putting this into Eq. (22) we get

24(0) = /(%anle+vBSB,,)~de, (33)
r

since the third term on the right-hand side of Eq. (32)
is the divergence on I” of ({- B,)B; and integrates to
zero, by the divergence theorem, as ¢ is of compact
support.

For stationarity of ¢;, the right-hand side of
Eq. (33) must vanish for arbitrary normal £, and this
implies the Euler-Lagrange equation

(Vs,Bx + 3|Bo*H) -n = 0. (34)

Eq. (34) represents the generalization to hypersur-
faces of arbitrary dimension of the result Eq. (14) de-
rived for two-tori in R>. The weight function correc-
tion can also be generalized in a straightforward man-
ner.

4. Conclusion

We have derived Euler-Lagrange equations for hy-
persurfaces that extremize quadratic flux functionals.
For divergence-free flows in R, a class of weight func-
tions has been found such that the surfaces retain the
invariant structures, such as closed flow lines, that
survive after perturbation away from integrability. In
higher dimension an obvious application is to Hamil-
tonian flows, which are divergence free owing to the
symplectic nature of the dynamical system. For in-
stance, one might use the principle to define a surface
over which to measure the flux due to the breaking of
an adiabatic invariant.

However the dimension of the phase space of an n-
dimensional Hamiltonian system is 2», while the di-
mension of constant-action surfaces in integrable sys-
tems, and invariant tori (if they exist) in noninte-
grable systems is », so that the theory as developed
so far forms a possible basis for generalizing action—
angle representations to nonintegrable systems only in
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the case n = 1 (which is nonintegrable if the Hamil-
tonian is time-dependent). It would thus be of inter-
est to generalize the concept of quadratic flux to lower
dimensional submanifolds than hypersurfaces.
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