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Almost-invariant surfaces for
magnetic field-line flows

By S.R. HUDSON AND R.L. DEWAR

Department of Theoretical Physics and Plasma Research Laboratory,
Research School of Physical Sciences and Engineering,
The Australian National University.
Canberra ACT 0200, Australiaf

(Received 27 October 1995)

Two approaches to defining almost-invariant surfaces for magnetic fields with im-
perfect magnetic surfaces are compared. Both methods are based on treating mag-
netic field-line flow as a lé-dimensional Hamiltonian (or Lagrangian) dynamical
system. In the quadratic-flux minimizing surface approach, the integral of the
square of the action gradient over the toroidal and poloidal angles is minimized,
while in the ghost surface approach a gradient flow between a minimax and an
action-minimizing orbit is used. In both cases the almost-invariant surface is con-
structed as a family of periodic pseudo-orbits, and consequently it has a rational
rotational transform. The construction of quadratic-flux minimizing surfaces is
simple, and easily implemented using a new magnetic field-line tracing method.
The construction of ghost surfaces requires the representation of a pseudo field
line as an (in principle) infinite-dimensional vector and also is inherently slow for
systems near integrability. As a test problem the magnetic field-line Hamiltonian
is constructed analytically for a topologically toroidal, non-integrable ABC-flow
model, and both types of almost-invariant surface are constructed numerically.

1. Introduction

In the classical dynamics of Hamiltonian systems (Goldstein 1980). one typically
seeks to transform to coordinates such that the vector field describing the differen-
tial equations of motion leaves a set of phase-space coordinates, the new momenta,
constant. These constant momenta are called the actions, and when they exist the
system is called integrable. 1f the phase-space motions are bounded, the constant-
action surfaces must be tori, and the variables canonically conjugate to the actions
are called the angles.

In this paper we restrict attention to the so-called 11-degree of freedom systems,
where there is only one momentum and one angle-like configuration-space coordi-
nate, but the system is periodically forced in time, so that the phase of the external
perturbation can be regarded as a second angle variable. The extended phase space
is thus three-dimensional. Such a system is said to be integrable if all trajectories
in the extended phase space lie on invariant two-tori. which form a one-parameter
family filling (foliating) the extended phase space.

7 e-mail: stuart.hudson@anu.edu.au, robert.dewar@anu.edu.au.
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A similar problem occurs in toroidal plasma confinement, where for improved
confinement one seeks a magnetic vector field such that the field lines remain on
toroidal surfaces. By considering such flux surfaces, when they exist, as coordi-
nate surfaces, one may define preferred curvilinear coordinate systems, such as
Boozer coordinates (Boozer 1982) in analogy with action-angle coordinates. In
fact (see § 2.1) the two problems are identical, since field-line flow in systems such
as stellarators, which lack a continuous symmetry, forms a l%~degree—0f—freedom
Hamiltonian system. The field-line problem is thus an important application of
the general theory of such systems and one where the extended phase space has
a clear physical meaning, being the real three-dimensional configuration space in
which magnetic fields exist.

Since 13-degree-of-freedom Hamiltonian systems are not generically integrable,
the existence of nested flux surfaces in magnetic confinement devices is the excep-
tion rather than the rule. with field lines following chaotic trajectories that are not
confined to a two-torus. With careful design, the regions of chaos can be reduced
{Hanson & Cary 1984; Cary & Hanson 1986; Hanson 1994) and the magnetic field
becomes nearly integrable. To investigate deviations of the field from integrability,
one may compare the true motion against motion in an integrable system that is as
close as possible to the actual system (Boozer 1983; Kaasalainen & Binney 1994).
We call the action-angle variables and invariant surfaces of such a neighbouring
integrable system approximate action-angle variables and almost-invariant surfaces
for the true system.

The concept of "as close as possible’ is clearly not uniquely defined. In this paper
we seek to compare two approaches to this problem, based on the construction of
selected almost-invariant tori rather than of a full set of approximate action-angle
variables. This approach has the advantage that the construction of each surface
may be done independently, thus reducing the dimensionality of the problem by
one.

At first sight, it might appear natural to select the candidate almost-invariant
tori to have irrational rotation numbers (rotational transforms) since, by the Kol-
mogorov—Arnol'd-Moser (KAM) theorem (Arrowsmith & Place 1991; Lichtenberg
& Lieberman 1992), such tori can survive as truly invariant tori even after an
integrable system is perturbed into a non-integrable one. One would require the
algorithm for defining ‘almost-invariant’ to be such that it found a KAM surface
when it exists. However, KAM surfaces are fragile, and their disappearance is
difficult to predict precisely (Greene 1979). After breakup of a KAM torus, the
remaining invariant set has a Cantor-set structure.

The rational rotation numbers, on the other hand, have simple invariant sets asso-
ciated with them — the closed, periodic orbits corresponding to the X- and O-points
of island chains - which survive to arbitrarily large perturbation (Arrowsmith &
Place 1991: Lichtenberg & Lieberman 1992), and can be readily incorporated into
robust almost-invariant tori. The problem then becomes to ‘fill in the gaps’ between
the periodic orbits. In both algorithms used in this paper this is accomplished by
defining a one-parameter family of periodic "pseudo-orbits’ that include the true
periodic orbits of an island chain. Because KAM surfaces, when they exist, can
be approximated arbitrarily closely by periodic orbits of sufficiently high-order ra-
tional rotation numbers (Greene 1979), no generality is in fact lost by restricting
attention to rational rotation numbers.

Both of the approaches that we shall use are connected with Hamilton’s princi-
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ple in that they can be viewed as seeking to minimize the gradient of the action in
different ways. Ghost curves (Angenent & Goté 1991; Golé 1992; MacKay & Mul-
doon 1993; Dewar & Khorev 1995) for area-preserving twist maps are defined as
a flow under the gradient of the action defined on the finite-dimensional space
of coordinates of a periodic pseudo-orbit. We generalize this to continuous-time
Hamiltonian systems by using the variational derivative of the Lagrangian as the
action gradient. Ghost surfaces are then defined using the gradient flow of the
action on the space of periodic curves in phase space. We implement this numer-
ically by using piecewise-linear pseudo-orbits in Hamilton’s principle to discretize
the problem.

The other candidates for almost-invariant tori are the quadratic-flux minimiz-
ing surfaces of Dewar et al. (1994). Such a surface is defined, for divergence-free
fields, as a stationary point of the integral over any toroidal trial surface of the
square of the normal component of the field, with a weighting function chosen
to make the Euler-Lagrange equation have non-singular solutions. We show in
this paper that quadratic-flux minimizing surfaces can be defined, for general
Hamiltonian systems, as the integral of the square of the action gradient. The
weight function is then seen to arise naturally. These surfaces are closely related to
the quadratic-flux minimizing curves recently introduced for area-preserving twist
mappings (Dewar & Meiss 1992; Dewar & Khorev 1995).

In § 2 we review the Lagrangian and Hamiltonian formulations of magnetic field-
line flow. In § 3 ghost-surfaces are defined and an expression for the action along a
piecewise linear trial curve is given. Expressions for the action gradient and Hessian
are given in the appendix. In § 4 quadratic-flux minimizing surfaces are defined,
and the concept of pseudo-orbits is used to interpret the Euler-Lagrange equation.
For illustration, in § 5 we introduce a simple non-integrable, topologically toroidal
system, formed by superimposing a periodic ABC flow with a linearly sheared slab
field. In the last sections, quadratic-flux minimizing surfaces and ghost surfaces
are displayed and compared.

2. Magnetic fields as dynamical systems
2.1. Field-line Hamiltonian

Toroidal magnetic vector fields are equivalent to time-dependent l_lj-degree—of-
freedom Hamiltonian systems (Boozer 1983; Cary & Littlejohn 1983: D’haeseleer
et al. 1983; Lichtenberg & Lieberman 1992; Yoshida 1994). To see this. we start
from the result (Boozer 1983; Yoshida 1994) that a general non-integrable mag-
netic field in a toroidal system can be represented in the form

B(r) = V) x V6 + V¢ x Vy (2.1)

where 8(r) and ((r) are respectively generalized poloidal and toroidal angle co-
ordinate functions, and ¥(r) and x(r) are respectively toroidal and poloidal flux
functions whose level surfaces do not in general coincide. We now introduce a third
generalized coordinate p(r) whose level surfaces form tori nested about the singular
line of the € coordinate, so that (p,8, () forms a complete curvilinear coordinate
system, and write x = x(p,0,¢) and ¥ = ¥(p,f,¢). The flux functions can now
be constructed from the contravariant components B® = B.Vg, B¢ = B.V( and
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B” = B.Vp by integrating the differential equations

FpXip.0,.¢) = TB? (2.2)
3¥(p.0,¢) = T B, (2.3)
)+ Bgx = —T B, (2.4)

where the overbar denotes a field expressed as a function of p,8 and { (since we
wish below to use the unbarred symbol to imply dependence on 9,8 and () and
J = (Vp.V8 x ()7 ! is the Jacobian in (p, 8, () coordinates. Equations (2.2)-(2.4)
must usually be solved numerically, but in this paper we use a model where they
can be evalnated analytically (see § 5).

Assuming 8P1Z_J #+ 0, we can invert ¥ = ¥(p, 0, () to obtain

p=p(,0,0), (2.5)

so we replace p by 1 as the independent generalized radial coordinate and express
the poloidal flux function as

X = x(¥,0,0) . (2.6)

Assuming B¢ # 0 at any point, the value of ¢ can be used to parametrize the
position along a field line, and the evolution of a point on the line as { increases can
be described by the differential equations

dd BV dy By

— = —_ = . 2.7
d¢ BV¢' d¢ BYV¢ (2.7)
Using (2.1) and (2.8). we write these equations of motion in the form
. Oy ,
==, 2.8
By (2.8)
;. Ox .
V=g (2.9)

where the dot represents the derivative with respect to (. These equations are
recognized as Hamilton’s equations, with ¢ acting like a time coordinate, ¥ playing
the role of the momentum conjugate to the angular position coordinate 8, and
x being the Hamiltonian. By using 1 as the radial variable, we have obtained
the equations in canonical form, but it would be possible to work with a general
radial coordinate p at the expense of a non-canoniecal form of Hamilton’s equations
(Cary & Littlejohn 1983).
2.2, Freld-line Lagrangian and action

Assume 8%y /8y # 0, so that (2.8) is invertible to give the momentum in terms of

the velocity. ¥ = (8,8, () The field-line Lagrangian ¢ = (8,6, () is constructed
from the Hamiltonian in the usual way (Goldstein 1980):

c=190—x. (2.10)

The action S is defined for some specified curve v = §(¢), as the ‘time’ integral
of the Lagrangian:

Slv] = /cp d¢ along the curve v: 8 = 6(¢) . (2.11)
Y

From Hamilton’s principle (Goldstein 1980), S is stationary with respect to varia-
tions of v when v is an actual field line. Note that (2.8) is automatically satisfied
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during variation of S, by construction, but that the second of the Hamiltonian
equations of motion, (2.9), has not been used, and will be violated except at sta-
tionary points of S.

Regarding €(¢) as a vector in an infinite-dimensional function space, and S as
a scalar function of that vector, Hamilton’s principle is the statement that the
gradient of S vanishes on a physical field line. To see this, we vary the curve v
along which the Lagrangian is integrated,

8(¢) — 8(¢) + 66(C) (2.12)
and define the variational or Fréchet derivative 65/860 such that

555/§59 c 66 . (2.13)
. 50

{(There are no endpoint contributions because of the assumed periodicity of the
system.) Since 4.5 is the inner product of 66 and 8.5/66 for all 68, §5/86 is the natural
generalization of the gradient. From the action integral (2.11), using integration
by parts,

=t _ 7. 2.14

60 96  dC 96 ( )

The usual Euler—Lagrange equations are obtained when the gradient 65/66 is set
equal to zero, as was to be proved.

Substituting (2.10) into (2.14), we find the Hamiltonian form of the action gra-

dient,
68 . Oy ,
- _ iy _~ 2
56 (7’ * ao) ’ (2.15)

which confirms the statement made above about the violation of (2.9).

2.3. Periodic orbits and pseudo-orbits

We restrict attention to curves « that close on themselves after m toroidal transits,
during which they make n poloidal transits. The subset of such curves for which S
is stationary are, in dynamical systems terminology, periodic orbits with rotation
number n/m. In stellarator terminology they are closed field lines with rotational
transform ¢ = n/m. while in tokamak language thev are closed field lines with
safety factor ¢ = m/n.

By the Poincaré-Birkhoft theorem (Arrowsmith & Place 1991: Lichtenberg &
Lieberman 1992; Meiss 1992) the periodic orbits occur in pairs. one member of
which is a minimax or saddle point of the action and is either stable. or hyperbolic
with reflection. while the other corresponds to a minimum of the action and is
always unstable (hyperbolic). When the action-saddle-point orbit is stable (elliptic).
it forms the centre of an island chain, while the action-minimizing orbit is in the
chaotic separatrix region of the island chain. We refer to the intersections of these
two classes of orbit with a Poincaré surface of section (e.g. ¢ = const ) as O-points
and X-points respectively.

By analogy with the construction in Dewar & Khorev (1995) of almost-invariant
curves for area-preserving maps, we consider a continuous one-parameter family
of periodic curves v(f]) with rotational transform n/m. We can label the curves
with any one of 8, 0 < ¢ < m, the poloidal angles of intersection of y with the
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Poincaré surface of section. We have chosen ). Since we seek to include the true
field lines in this family, we term the other members of the family pseudo field lines
(pseudo-orbits). Denote & for a true periodic orbit by 6; and assume that () and
7(6;) coincide, where 8; is the physically closest intersection to 6y. Then the family
of pseudo-orbits {y(6)) | 6o < 0, < 8;} makes up a complete toroidal surface I'.

We end this section by deriving a form of the action gradient involving the mag-
netic field explicitly. First we find a useful identity relating 6 and v by considering
the “velocity’ along ~y

P = (YVO x V¢ + OV x Voo + Vo x VO T, (2.16)

where J = (V¢.V6 x V()~'. We now annihilate the left-hand side by dotting with
any vector, n say. orthogonal to r, to find the identity

O n.V¢ x Vi +n.Vy x VO = —h n.VO x V( . (2.17)

In the context of the construction of the torus I' from a family of periodic pseudo-
orbits, it is natural to take n to be the unit outward normal to I'.
Dotting (2.1) with n and using (2.8) and (2.17), we find

.0
Bn=— (u + ?)%) n.Vo x V¢ | (2.18)
where B,, = n.B. Comparing this with (2.15), we see that
68 B,
— = = 2.1
59 C. (2.19)

where C,, = n.C, with C = V4 x V(.

3. Ghost surfaces

The curves « for which the action gradient 65/60 vanishes are invariant under
the flow. This suggests that any strategy for defining an almost-invariant curve
should minimize the magnitude of the action gradient.

Our first strategy, a direct analogue of the ghost-curve method for area-pres-
ersving maps (Angenent & Golé 1991: Golé 1992; MacKay & Muldoon 1993), is to
seek the curve corresponding to the O-point closed field line (periodic orbit) with
rotational transform n/m, a saddle point of the action. and then to follow the paths
of steepest descent on either side of the saddle, down to the neighbouring action-
minimizing X-point closed field lines (hyperbolic periodic orbits). This defines a
family, v, say, which serves to define a torus in the manner described in § 2.3. The
steepest-descent path is defined by the gradient flow

-0 _ S o)
or o0
where 0,(¢) is the trajectory that defines v, through (2.8). By this construction,
we automatically capture the invariant sets formed by the two periodic orbits and
fill the surface in between in a way that in a sense minimizes the deviation of the
pseudo-orbits from invariance.

In the integrable situation, a reinterpretation of ghost surfaces is required. The
periodic solution curves are degenerate, and one no longer can distinguish a min-
imizing or a minimax orbit. Also, the gradient flow becomes zero in the required
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direction. One then chooses any one periodic orbit and deforms it, while not increas-
ing the action, to form all the other members of the family making up the ghost
surface. The direction of deformation is given by the eigenvector of the Hessian
that corresponds to the zero eigenvalue.

3.1. Ghost pseudo-orbits

As yet, there remains the problem of how to represent a continuous trajectory in
phase space and in particular to evaluate the action along an arbitrary periodic
curve. The curve, being periodie, may be expressed as a Fourier series. The action
evaluated on this curve over a periodicity length will then be a function of the
Fourier components. Alternatively, a discrete set of points describing the curve may
be used to fit a spline curve. In this paper, perhaps the least sophisticated method
(but also the simplest both intuitively and mathematically) of a piecewise-linear
representation is used to approximate the trajectory in phase space. A continuous
trajectory is determined by straight line segments through a discrete set of position
coordinates y; labelled as nodes. The action then becomes a function of the y;. and
the problem is reduced to finite dimensions. Only periodic orbits of type (n, m) are
considered, and hence a constraint must be enforced :

YitmN = Y T 270 (3.2)

The dimensionality of the problem becomes mN . where N is the number of seg-
ments per 27 in the z direction. Note that as m increases, so does the length of the
gradient vector and the Hessian.

The piecewise-linear curve is denoted by % and is specified by mN values
Yi=1,...,mN- Note that in each region (z;_1, z;} the position and velocity are given by

- Yilz — zi) Ty (z — 2)
Y Az )

for z € [2i—1, 2i] (3.4)

(3.3)

Y Y
v Az

The velocity is discontinuous, but it is discontinuous on a set of measure zero and
the action integral is well defined. Accordingly, a high number of segments in the
piecewise-linear approximation are required to accurately describe the trajectories,
particularly for higher-order resonances.

The action becomes a function of mN variables, namely the =1, mn. instead
of a function of a continuous curve. The action integral is decomposed into a
summation of integrals over each segment of the curve. These integrals may now
be evaluated. since the functional form for the curve in each region is now known,
and the integral becomes a simple integral over the variable z:

mN mN zi
S =Sy =>_5=Y | »@y2dz (3.5)
i=1 i=] Y Fi-1

where S; is the action of the straight line segment from z;_; to z;. This may
be evaluated using the Simpson’s rule approximation. Expressions for the action
gradient and the Hessian may be derived, and are provided in the appendix.

3.2. Location of extremal curves

We now have a means of approximating the infinite-dimensional continuous-time
phase-space trajectory. An arbitrary curve may be varied until it satisfies the
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Euler-Lagrange equations to obtain a real physical trajectory. Alternatively, one
may vary the curve until the action becomes a minimum. The minimal curve is
actually the unstable trajectory.f This corresponds to the X-point on Poincaré
cross-sections. A first guess for the approximating curve can be taken to coincide
with this point. Even though the actual trajectory evolves in time in an unstable
manner, the method of minimizing a function along a trial curve specified by mN
variables is quite simple. No reliance on attempting to follow chaotic field lines is
required. A good approximation to the unstable, minimal orbit may be found. The
NAG algorithm E04KCF was used to do this.

To locate the saddle curve, it is necessary to locate a zero of the gradient vector.
Typically. one would proceed using a multidimensional Newton’s method utilizing
the Hessian. In such a procedure, a problematical aspect of ghost surfaces is en-
countered. For close-to-integrable systems, one runs into the difficulty of inverting
an ill-conditioned matrix, since the Hessian typically has a very small eigenvalue.
This is a direct consequence of the degeneracy of periodic solutions in the integrable
limit. The inversion of the Hessian was achieved using singular-value decomposi-
tion (Press et al. 1983). This technique is designed to invert singular or nearly
singular matrices and locates the eigenvectors corresponding to the non-zero eigen-
values. In this application the Hessian has only one small (negative) eigenvalue
(MacKay & Muldoon 1993).

To check that the saddle curve has been located succesfully, one may check that
the Hessian evaluated at the saddle curve has only one negative eigenvalue and
the elements of the corresponding eigenvector are the same sign. Also, one may
check that the action evaluated on the minimal curve is lower than the action
evaluated along the saddle curve, and that both curves have zero gradient. The
single negative eigenvalue indicates that the single direction along which the action
integral decreases is the direction specified by its associated eigenvector.

The construction of the gradient flow requires the integration of a system of
mN ordinary differential equations. The integration variable was chosen as the y
coordinate of the intersection of the ghost surface and the plane z = 0.

4. Quadratic-flux minimizing surfaces
4.1. Definition

We define the magnetic flux entering or leaving the torus I' as (Dewar et al. 1994)

]
P = §/F1Bn\ do . (4.1)

Here do = d8d(/C}, is an element of surface area, where C,, = n.V8 x V(, with n
the unit normal to I' at the point defined by (8, (). We see that from (2.19)

1 e 68
_// dedc‘@

As argued in Dewar et al. (1994). ¢ is not an appropriate objective functional for
defining almost-invariant surfaces for magnetic field-line flow. Instead, we use (4.2)

1

§ This is consistent with stable motion occurring near potential minima. A minimum of the
action corresponds to a motion along which the Lagrangian is minimal. Since L = T~V the
greater the potential the lower the Lagrangian. Unstable trajectories occur near maximum
potentials.



Almost-invariant surfaces for magnetic field-line flows 369

to motivate the definition of a second moment, or quadratic-flur functional

1y 6S\° ,

Using (2.19), we can express this in terms of the magnetic field as

B

With the choice € = V8 x V(, (4.4) is identical with that defined by Dewar et al.
(1994). The mysterious weighting factor 1/C}, is now seen to arise naturally from
minimization of the action gradient in least squares over the surface. Assuming
that the level surfaces of § and { never become tangential to I', i.e. that they are
suitable coordinates on the torus, the transversality condition C,, # 0 is satisfied
everywhere.

This definition of € depends on the underlying angle coordinates # and (. If a
nearby integrable field is known, with a preferred toroidal angle, then it is natural
to choose the action-angle coordinates for this system. The coordinate dependence
of (4.3) results from a preferred coordinate representation of C. If C is given as
an arbitrary transverse, divergence-free field then the quadratic-flux integral is
independent of the coordinates, as shown by Dewar et al. (1994).

The Euler-Lagrange equation resulting from (4.4) is (Dewar et al. 1994)

B,.Vv=0, (4.5)

where B, = B — vC and v = B, /C,. We call B, the pseudo-field and v the non-
integrability parameter. From (2.19), v is seen to be the negative of the action
gradient.

Although the magnetic-field form of 3, (4.4). does not depend explicitly on the
pseudo-orbit concept, we see from (4.5) that pseudo-orbits emerge naturally as
the characteristics of the Euler—Lagrange equation. In fact. they are the closed
lines of force of the pseudo-field B,.. Equation (4.5) shows that v is constant on
such a periodic pseudo-orbit. In particular, v is zero on the true physical periodic
orbits, or closed field lines. Thus the invariant dynamics of an island chain can be
captured by including its periodic orbits in both the ghost-surface construction and
the quadratic-field line minimization method.

1.2, Quadratic-flux minimaizing pseudo-orbits

To construct a quadratic-flux minimizing surface I', we start with a true periodic
orbit, which forms the first member of the family of pseudo-orbits making up the
surface. The normal component of B is zero, so ¥ = 0 on such an orbit. By
continuity, for small non-zero v, B, will have a periodic orbit that is near to the
original real periodic orbit. Thus, by varying v and locating the corresponding
periodic pseudo-orbit, a family of periodic pseudo-orbits could be found to form
the quadratic-flux minimizing surface.

Specifying v directly requires a search in the two dimensions (p, 8), but this can be
difficult in practice because there are typically two periodic pseudo-orbits with the
same v, except where they merge at a tangent bifurcation (Dewar & Khorev 1995).
For v greater than the value at this bifurcation, the search will fail. Thus paramet-
rizing the pseudo-orbits by v itself is not practical. Also. for configurations close to
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nested integrability, the range of v will be very small, again making v unsuitable
for parametrization purposes.

A more robust method is to specify instead 8 and to search in the two dimensions
(p,v) for a periodic solution, which will exist uniquely. We have implemented this
strategy successfully by adapting Broyden’s method (Press ef al. 1983). which gives
convergence to very high precision in a few iterations. The initial guess of v = 0
{which would be the case for all § in the integrable limit} and an estimate for the
radial location of the perturbed periodic orbits found from the unperturbed location
{see § 5, (5.2)) were found to be good choices.

Surfaces for arbitrarily high m could be constructed for about the same computa-
tion time by exploiting the periodicity constraints. The entire surface is described
by following only those (n,m) periodic pseudo-orbits within a poloidal angular
range of about 2w /m, around m toroidal transits.{ This construction avoids previ-
ous problems encountered when constructing flux surfaces of low rational rotational
transform in the integrable limit. The efficiency of field-line tracing methods be-
comes poor {Reiman & Pomphrey 1991) as the number of toroidal transits required
to adequately sample the surface become large. Yet the emergence of the parameter
v seems to allow a freedom that enables one to adequately sample periodic surfaces
of high-order rational (rationals with large denominators) rotational transform as
simply as those of low-order rational rotational transform.

5. ABC magnetic field

Our ultimate interest is the study of stellarator magnetic fields, but the calcula-
tion of realistic stellarator fields is time consuming so in this paper we use a simple
model field that is, like a general stellarator field, both non-integrable and topo-
logically toroidal. This is achieved by using a magnetic field that is periodie in two
directions (y and z) and identifying points one period apart.

We also require the field to have a nowhere-vanishing toroidal component and
a monotonic rotational transform, similar to the twist condition often used when
analysing area-preserving maps (Dewar & Meiss 1992). This avoids the complica-
tions that occur when there is a region of vanishing magnetic shear in the plasma
(Hayashi et al. 1995; Davidson ef al. 1995) and the inapplicability of the Poincaré—
Birkhoff theorem (Howard & Humphreys 1995).

A simple field that satisfies these criteria is the modified ABC field

By(x,y,z) = Asinz + Ccosy,
By(z,y,2) Bsinz + Acos z + ax, (5.1)
B.(x,y,2) Csiny + Beosxz + By .

I

This field differs from the usual ABC field in that the extra terms ax and B,
are included to give the field shear in the y direction and a constant component
in the z direction. The z coordinate plays the role of the toroidal coordinate,
the y coordinate that of the poloidal angle and the z coordinate acts as a radial
coordinate. Note that the periodicity length in both the y and z directions is 27,
and with B,y > B + C the ‘toroidal’ component of the field is nowhere-vanishing.
The model retains the simplicity of Cartesian coordinates, with the contravariant

§ In the positive 8 direction, the next closest intersection point with the Poincaré section
will be the point obtained by following the trajectory around [ toroidal transits, where
In =1 (mod m).
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and covariant basis vectors being 1, j, k and the Jacobian being equal to 1. Unlike
toroidal systems, negative values of the radius-like variable (in this case ) are
defined.

For the integrable case A = B = C = 0, the radial-like coordinate z is a
constant of the motion, and the angle y increases linearly in ‘time’ z at a rate
ax/B,y. This is in direct analogy with action-angle variables. If we denote by
(z;,y;) the intersection points of a continuous trajectory with the toroidal surface
of section z = 0 then we obtain a discrete trajectory that characterizes the contin-
uous trajectory. This method is the Poincaré mapping formalism of Hamiltonian
mechanies (Lichtenberg & Lieberman 1992; Arrowsmith & Place 1991). Periodic
orbits are those that satisfy y;..,x = y; + 27n and are found at radial locations
given by
n _ azx

m B,

g_z (5.2)

With A, B and C all non-zero, chaotic trajectories are created.
We construct the field-line Hamiltonian and canonical momentum by integrating
(2.2)-(2.4)

X(z,y,2) = %a:rz — Beosz + Az cosz + f(y, 2), (5.3
Y(x,y,2) = Byyx + Bsinz + Czsiny + gy, 2). (5.4)
Here f and g are arbitrary other than being required to satisfy
0.9+ 8,x = — B, , (5.5)
which is solved by
fly,zy=Csiny, gly,2z) = Bsinz . (5.6)

The velocity ¥ is constructed from Hamilton’s equations in the canonical coor-
dinates (¢, y, 2) as

O:X(z,y,2)  ax+ Bsinz+ Acosz
O 0(x,y,2) B+ Bceosz+Csiny

y(za Y, Z) = 5¢X(TP~ Y, Z) =
This is solved numerically for z = Z(¢, y, z) to obtain the Lagrangian

o,y 2) = V(@(Y, ¥, 2). 4, ) — X(Z(Y, ¥, 2), ¥, 2) - (5.8)

6. Quadratic-flux minimizing surfaces for the ABC field

Several quadratic-flux minimizing surfaces have been calculated for various per-
turbations of the ABC field and are shown in the following figures. Three surfaces
are shown in figure 1. For low perturbations, periodic pseudo orbits of arbitrarily
high order were easily located. Cross-sections of many surfaces are shown in fig-
ure 2. As the perturbation increases, chaotic regions grow, and the method used to
locate the periodic pseudo orbits becomes more unstable and problems are encoun-
tered for the higher periodicities. Nevertheless, quadratic-flux minimizing surfaces
are fairly robust, as figure 3 shows. Further evidence indicating the construction
of these surfaces is possible in regions of connected chaos is presented in Dewar &
Khorev (1995).
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15 ¢

T2 3 4 5 6
v

100°

Frauvre 1. Weighted quadratic-flux minimizing surfaces with periodicities (n,m) =
(0,1).(1,2) and (1,1) for A =0-06. B=0-06, C = 0-06, B., =l and a = 1.

Numerical evidence cannot prove that surfaces with different periodicities do not
intersect, but it may strongly support such claims. Surfaces for nearby rationals
were constructed numerically, and are seen to be smooth and non-intersecting for
quite large perturbations. They are shown in figure 4. Note also that in figure 4
the (2, 3) surface threads the O- and X-points. This feature is guaranteed because
the same integrator was used to construct the Poincaré plot as was used to locate
the periodic pseudo-orbits. in particular the real periodic orbits, which correspond
exactly to the O- and X-points.

We may note the sinusoidal behaviour of the non-integrability parameter v,
shown in figure 5. The smooth behaviour of this function, the discussion pre-
sented regarding the construction of periodic pseudo-orbits and the numerical ev-
idence suggest strongly that quadratic-flux minimizing surfaces are smooth and
non-intersecting, at least until chaos has swamped the region and the periodic
pseudo-orbits become more difficult to locate.

Anisland chain of finite width prohibits other island chains (of the same, required,
topology) within the resonance. This is seen in figure 2, where the large (0, 1) is-
land has pushed apart the quadratie-flux minimizing surfaces. With the intended
construction of a coordinate svstem. where the surfaces are required to form a con-
tinuous radial coordinate, an interpolation is required. A method used presently
in PIES (Reiman & Pomphrey 1991: Greenside ef al. 1989) is that of Fourier de-
composing a diserete set of surfaces, then using cubic splines to interpolate the
individual Fourier components. This procedure has successtully been applied to
quadratic-flux minimizing surfaces constructed for the H-1 Heliac and general-
ized magnetic flux coordinates have been introduced. This is the topic of ongoing
research.
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ABC field Cross-sections
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Fiuvre 2. Cross-sections of quadratie-flux minimizing surfaces (n,m) = (0,1). (£1,1).
(£1,2). (£1,3), (£2,3), (£1,4). (£3,4), (£1,5). (£2,5), (£3,5). (£4,5). (+5,6). (£2,7).
(£3,7). (£4,7), (£5,7) and (£6, 7) compared with a Poincaré cross section of the ABC flow
for low perturbation, A =1, B = 0-5and C = 0-025.

ABC field Cross-sections

Fierrre 3. Cross-sections of quadratic-flux minimizing surfaces (n,m)
(£1,2). (£1,3). (£2,3). (£1,4). (£3,4), (—1,5). (—=2,5). (£3,5). (£1,6).
(£3,7). (£4,7) and (=5, 7) compared with a Poincaré cross section of the AL
perturbation, A = 5. B = 0-5 and C' = 0-015.
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FicUure 4. Cross-sections of quadratic—flux minimizing surfaces with periodicities (n, m)
= (2,3). (7.10). (7,11), (9,13), (9,14}, (11,16). (11,17). (12,17), (12,19). (13,19). (13, 20).
(15,22), (15,23), (20,29) and (20,31);: A=2, B=0-1and C =0-01.
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FiaUre 5. Non-integrability parameter v for A =5, B=0-5,C =0-015,p=1and g = 2.

7. Ghost surfaces for the ABC field

Several ghost surfaces and their intersection with the Poincaré section are shown
in figures 6 and 7 respectively.

It is obvious that, as the number of linear segments used to approximate the
continuous curve is increased, the accuracy will improve. A more precise test of
this is achieved as follows. A very good approximation to the stable (1, 1) trajectory
y = y(z) for z € [0, 2] can be made by integrating along the magnetic vector field.
The stable trajectory is quite easy to locate using Broyden’s method. Only the real,
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F1GURE 6. Ghost surfaces (n,m) = (1,1), (0,1) and (—1,1).

stable periodic orbit is required, so the search is simply in (p, #) space and there is
no non-integrability parameter v to consider. The approximating piecewise-linear
curve Yi=1,...mnN can be compared with the actual orbit using a sum of deviations
method. One can define a measure of the difference A as follows :

1 mN

e e ;[yi — y(ihz)P (7.1)
The approximation y;=i,. mn~ to the saddle curve was found using about seven
iterations of Newton’s method, with a singular-value decomposition of the Hessian
matrix. The numerical routines SVDCMP and SVBKSB from Press ¢t al. (1983)
were used. Typically, the zero of the gradient was found to about 107". The
magnetic field parameters used were A =5,B =0-5,C = 0-015,B,, =l and a = 1.
Figure 8 shows the behaviour of this parameter with V. The computation time
required for such values increased so much that it became impractical to construct
ghost surfaces with high m values, and N = 20 was used. Such a value gave
reasonable agreement with the smooth position coordinate.

A set of three coordinates was constructed from the curve by associating the con-
stant velocity (which may be converted to a canonical momentum coordinate) with
the midpoint of the time and position in each region. Note that the piecewise-linear
description of the trajectory implies a discontinuous velocity coordinate. Thus the
piecewise-linear approach may be too simple, since it produces a resolution problem.
To overcome the poor resolution, the momentum coordinate was smoothed using a
three point average. This reduced the irregularities inherent in the piecewise-linear
approach.t

The integration of the defining differential equation of ghost surfaces is slow

T Note that averaging the velocity curve has very minor effects on its consistencv with
the position curve. Since the average of the velocity over a small region is unchanged.
the average position curve is unchanged. First-order changes made to the velocity curve
become second-order changes to the position curve. This step is consistent with using a
piecewise-linear continuous-curve approximation.
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Figure 7. Cross-sections of ghost surfaces (n,m) = (1,1), (1,2), (0, 1), (—1,2) and (-1, 1),
for A=35, B=0-5and C =0-015.
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Ficure 8. Convergence of angle with N: (a) angle convergence test: (b) angle versus time
for a real periodic curve.
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A B C B, «a Al

5 05 0-01 1 1 —-0-00045
5 05 0-02 1 1 —-0-00109
5 05 0-04 1 1 —0-00288
5 05 005 1 1 —0-00402
5 05 007 1 1 —-0-00674
5 05 0-09 1 1 -0-00997
5 05 010 1 1 —0-01173
5 05 020 1 1 —0-02355

TasLe 1. Hessian eigenvalues.

when the system in nearly integrable, but maybe it could be improved by a pre-
conditioned descent algorithm or the adding of an inertia term to the equation
(Hirshman & Betancourt 1991). Also, for strong perturbations, bifurcations in
phase space may produce two solution curves, of double the periodicity, very close
to the original saddle curve and this seems to disrupt the location of the saddle
curve.

Table 1 shows the behaviour of the negative eigenvalue of the Hessian calcu-
lated for the (1, 1) periodic orbit for various perturbations. As the perturbation is
increased, the magnitude of the eigenvalue increases. This is related to the increas-
ing non-degeneracy of the minimal and minimax orbits as one moves away from
integrability. The gradient between the orbits also becomes greater.

8. Comparison of ghost surface and quadratic-flux minimizing surface

For (n,m) = (1,1), and for high accuracy (N = 50) in the piecewise-linear ap-
proach affordable for such low m, we may compare the curves. The solid line in
figure 9 is the cross section of the (n, m) = (1, 1) ghost surface, with the dashed line
being the quadratic-flux minimizing surface. The = coordinates of the quadratic-
flux minimizing surfaces were converted to the canonical momentum coordinates
of the ghost surface construction to enable this comparison.

9. Conclusions

Both the construction of ghost surfaces and quadratic flux-minimizing surfaces
have been implemented successfully for a model toroidal field. It has been shown
that the construction of quadratic-flux minimizing surfaces is much simpler and
quicker, and becomes trivial in the integrable limit. For the study of nearly inte-
grable systems this nice behaviour near integrability is an attractive feature of the
quadratic-flux minimizing surface method.

By contrast, the construction of ghost surfaces from a gradient flow curve breaks
down at integrability, though this may be overcome by moving along the nullvector
of the Hessian matrix of the action functional. What does not appear to be avoid-
able is the inherent slowness of the ghost-surface method for situations near inte-
grability. Added to this is the complexity of constructing approximating periodic
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Fieure 9. Cross-sections of ghost surface and quadratic-flux minimizing surface, (1, 1) for
A=5 B=0-5and C =0-015.

orbits by some kind of functional representation and the subsequent calculation of
the gradient and the typically ill-conditioned Hessian matrix. The construction of
the Lagrangian itself requires, in typical magnetic field cases as considered in this
paper, a numerical integration to obtain the Hamiltonian and canonical momen-
tum and then a numerical inversion to obtain the velocity function. This latter
point only applies when one is transforming from a magnetic field-line description
to the Lagrangian/Hamiltonian description, and would not apply if one were given
the Lagrangian directly.

One technique emploved in PIES to examine non-integrable magnetic fields is
the use of ‘near-magnetic coordinates’ (Greenside et al. 1989). This method uses
flux surfaces where they exist (though resonant perturbations may have destroyed
some flux surfaces. other ‘more irrational’ surfaces will remain), and interpolates
between these surfaces through the chaotic regions. This procedure thus tends to
utilize irrational surfaces only, in that perturbations destroy surfaces with rational
rotational transform. The KAM theory guarantees the existence of at least some
flux surfaces, but for the more irrational frequencies. As a result, one may expect
(Greene 1979) that these surfaces are the most deformed surfaces that one may
choose. The deformations are caused by resonant perturbations, usually the lower-
order rationals, which destroy the rational flux surfaces and deform the irrational
surfaces nearby. The most irrational numbers are found near the lowest order
rationals, where the resonant pertubation has its greatest influence. The greater
the deformation of the surface, the greater the Fourier coefficients required to
describe it and the problem of exploding Fourier coefficients is encountered.

For the construction of quadratic-flux minimizing surfaces, however, one chooses
low order rationals. Even though these are the flux surfaces that are first destroyed,
quadratic-flux minimizing surface are likely to be only slightly deformed. The
quadratic-flux minimizing surfaces pass directly through the island chain. The
(n, m) Fourier coefficient of the (n, m) surface is likely to be small.

We have shown that the theory of Dewar et al. (1994), derived geometrically for
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general divergence-free fields, follows naturally from the Lagrangian/Hamiltonian
approach. TIts beauty is that it is expressed directly in terms of the magnetic
field, and thus does not require explicit construction of canonical magnetic-field
coordinates and a Hamiltonian. As a result, our numerical method for constructing
quadratic-flux minimizing surfaces relies simply on well-established methods for
tracing magnetic fields and finding the location of periodic orbits. Since we have
shown that the action gradient can be expressed directly in terms of the magnetic
field, it may also be possible to formulate a ghost-surfaces theory that does not
require explicit construction of the Lagrangian, but it would almost certainly still
be more time-consuming, especially near integrability.

The use of pseudo-orbit formalisms allows the problem of constructing approx-
imate action-angle representations to be decomposed conceptually into two dis-
tinct phases—the construction of almost-invariant surfaces and the construction of
a global coordinate system. In this paper we have addressed only the first problem.
There are several issues to be considered before the global problem is fully solved.

One issue is the choice of the poloidal and toroidal angle coordinates #(r) and {(r).
We have taken these as given, but it is common practice in magnetic confinement
physics to regard both the poloidal and toroidal angles as general curvilinear coor-
dinates, to be chosen to simplify the representation of the physics. For instance, in
the integrable case straight-field-line coordinates, particularly Boozer coordinates
(Boozer 1983), are often preferred.

Another issue is the choice of almost-invariant surface. We have argued that
the quadratie-flux minimization principle applied to selected rational rotational
transform surfaces provides a robust and practical way of choosing surfaces, but
one still needs to select which rationals to work with and to interpolate between
them in some suitable smooth fashion. A further point is that the surface problem
and the angle problem are not completely decoupled, since in both the ghost-surface
and quadratic-flux formulations the action gradient depends on the choice of angle
coordinates. Thus the almost-invariant surface will change if the choice of angles
is changed.

Meiss & Hazeltine (1990) have pointed out that careful choice of coordinates can
make the Hamiltonian representation of guiding-centre motion canonical. even in
the non-integrable case. An optimal choice for the global coordinates might thus
be one that is canonical in the sense of Meiss and Hazeltine and that reduces to
Boozer coordinates in integrable cases.

One of us (S.R.H.) was supported by an Australian National University post-
graduate scholarship.

Appendix A. Numerical determination of ghost surfaces
The gradient of the action function is constructed. Note that each S; is a function
of the independent variables y;_; and y;, that is
Si = Si(yi—1, ¥s)- (A1)

The variation in the action of the entire curve is then
mN

8571 =) _(9:5: + B1Sin1) i (A2)

=1
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Here 9; indicates differentiation with respect to the ith variable of S;. From this
the gradient may be identified:

0;S = (025; + O1Sin1) = BiS(Wiz1, Vi, Yiv1)- (A3)
Here 0:5; and 0,5, are given as

% o 1
S, = / [31199 (—A‘Z‘“> — Oy (E)} dz, (Ad)
Z3 . 1 i

The gradient of a function of mN variables is a vector of length mN. The gradient of
the gradient is interpreted as a matrix, called the Hessian or the matrix of second
partial derivatives. The Hessian is required since it gives information about the
structure of the phase-space trajectories around a certain point when the gradient
itself is degenerate. That is, when the gradient is zero along a trajectory, which is
the condition for the trajectory to be a physical trajectory, the trajectory itself may
be the saddle orbit or the minimal orbit. The Hessian contains information that
determines which type of trajectory has been located and also some information
on the value of the action evaluated on nearby curves. The Hessian enables the
zeros of the gradient to be found efficiently by using an mN dimensional Newton’s
method. Also, it indicates the single direction (up to scalar multiple) to move away
from the saddle orbit so as to decrease the action.

Note that for the piecewise-linear method, each term in the gradient vector V.S
depends on only three of the discrete set of positions y,,, so most of the elements of
the Hessian V2S will be zero. In fact, the Hessian is a periodic tridiagonal matrix.
Tts elements are given by

V2Sn_tm = O 10,5 = 8,025,, (A 6)
V28 n = 000,S = 02025, + 3101 Sy, (A7)
V2Snstn = Ons10nS = 3201 Sps1s (A 8)
S, = / (a Oyp —Z ayawi) Z”A;Z ¢
—/ (a B0 — 8,00~ ) R (A9)
e A Az 7

agalsn:f"(aay A = 49,0, )z"A;ng

_/" (a Byp™ =+ 0,0, )édg, (A10)

0,88, = / i

(000 =t v ooy ) St e

+/"(aay LIl 4 0040 l)idc. (A1)

n—
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The structure of the Hessian is as follows:

VIS, VS, ... . V2S) N
VESay V2555 V2Sas
: V2S5 VS35 V2Ss,
D VS VIS, VS,
VESmNy ... coo V2SN mN—1 VESmNmN

If cubic splines were used instead of the piecewise-linear description, the Hessian
would be a periodic quin-diagonal. In the Fourier approach, generally none of the
terms would be zero. The description of a continuous curve using finitely many
parameters reduces the infinite dimensionality of the Hessian to something more
manageable.
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