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Criteria for second stability for ballooning modes in stellarators
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An expression determining how variations in the pressure gradient and average magnetic shear
affect ballooning stability for a stellarator equilibrium is presented. The procedure for determining
the marginal stability boundaries, for each field line, depends only on the equilibrium and a single
ballooning eigenfunction calculation. This information is sufficient to determine if increasing
pressure gradient is stabilizing or destabilizing and to predict whether the configuration possesses a
second stable region. @004 American Institute of Physid®Ol: 10.1063/1.1779237

An economically viable fusion reactor must sustainequation, which is local to a field line and simpler to solve
high-pressure, stable equilibria. It is often predicted that theaumerically. Of primary importance is the boundary between
short wavelength pressure-driven instability, the ballooningstable and unstable equilibria: the marginal stability bound-
mode, will be the instability that limits the obtainable plasmaary.
stored energy. This paper will present an expression describ- |n this paper we consider how the stability of an arbi-
ing how ballooning stability will vary as an arbitrary three- trary equilibrium will vary, as the equilibrium itself is varied.
dimensional equilibrium is varied and predicts whether an particular, an analytic expression for how the ballooning
configuration will possess a second stable region, in whiclyrowth rate, of a selected field line with given radial wave
equilibria may possess arbitrarily large pressure gradientgector, depends on small variations in the pressure gradient
and not be limited by ballooning instability. The technique 5, and rotational-transform gradiethe average magnetic
depends on a two-stage approach. Initially, the method ofheay 6.’ is derived. This expression allows the marginal
profile variations is used to construct families of ne'ghbor'ngstability boundary for the selected field line in the given
magnetostatic equilibria” Subsequently, a perturbation ap- equilibrium to be determined immediately, and can also pre-

Eroach |ihen;pllcl)yed. to gstlmatia the effect these Va”at'onaict the existence, or otherwise, of the second stable region.
ave on the ballooning eigenvalue. Recent work on the topic of second stability has indi-

Second stability is the paradoxical phenomenon where , .
. . . : cated that some stellarator configurations do possess second
increased pressure gradient can stabilize ballooning modes, . ... 5 . L

. . Stability,” and that some do nbtThe guestion thus arises:
The effect of second stability has long been known in the

(axisymmetrig tokamak community,but it is not clear how what property of the configuration determines whether a sec-
the (nonaxisymmetrig stellarator will behave. The three- ond stability region will exist:

dimensional geometry of stellarators gives rise to increased Tht'allbb.rute-fo;ce lappfr]oag:f}l IS t9 numerlca:Iy compgte
complexity in equilibrium and stability calculations. Indeed, " €qutiibrium and so ve the ballooning eigenvalue equation.

the complexity requires equilibrium and stability studies to | N€ Pressure is then increased and the process repeated. This
be performed numerically at significant computational cost, £70¢ess is tedious and imparts little insight. More important
fact which highlights the importance of this work that ana-Perhaps is that this method cannot ascertain whether, beyond
lytic predictions of stability can be derived. a region of instability, there lies a second stable region.

An equilibrium is obtained when the Lorentz force bal- A better approach, the method of profile variations, was
ances the pressure-gradient fordes B=Vp. The equilib- introduced by Greene and Chahder axisymmetric con-
rium is determined by the plasma boundary, the pressurbigurations. They considered variations in the pressure gradi-
profile, and an additional profile quantity such as the currenent and average shear at a selected magnetic surface in the
density or rotational transform. The rotational transform equilibrium. The pressure gradient and average shear have a
measures the pitch of the magnetic field lines as they twistrucial impact on ballooning stability, as the presence of
around the torus. By considering a small displacement, of theressure gradients in regions of unfavorable curvature is the
form &(x) exp(-iwt), from an equilibrium, linear stability is cause of ballooning instability, while shear is the dominant
determined by an eigenvalue equatiom?pé=F(£), where  stabilizing mechanism. The equilibrium itself is then ad-
F=JX6B+86IXB-Vdp. If this equation allows a growth justed to preserve force balance, and a family of semianalytic
rate such that?<0, the perturbation will grow. neighboring equilibria is constructed. For each such con-

To study ballooning modes, the WKB eikonal represen-structed equilibrium, the ballooning equation may be re-
tation gzéexr{ins] is employed* wheren is the (large  solved numericallyexactly and marginal stability diagrams
toroidal mode numbek =V S(x) is the wave vector, and to constructed. Such diagrams are widely used to study toka-
lowest order in 1n it is assumed thak -B=0. The stability = mak stability, and recently the analysis has been extended to
condition reduces to an eigenvalue problem, the ballooningtellarator geomen%/.7 This method eliminates the need to
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recompute the equilibrium, and illuminates the role of the J [(Ga,,— |
. o=y + 2 29w Gue) 6)
local magnetic shear. an\  \gg¥

The mechanism for second stability was determined to
be that pressure-induced variations in the parallel currentwhereg,,=e, e, andg,,=e,-e. This is a Sturm—Liouville
J,=J-B/B?, cause variations in the local shear, which mayeigenvalue equation with boundary conditigf<)=0. To
strengthen the stabilizing force in regions of unfavorable curdetermine stability, it is necessary to determine the largest
vature. A related pressure-induced stabilization phenomenagigenvaluey. In the following, we will solve the ballooning
that should be mentioned is when increased pressure altegguation for a prescribed equilibrium and determine the un-
the geometry of the configuratidi:° While this mechanism  stable eigenvalue and its eigenfunction. Subsequently, this
can modify the stability properties, it is generally a smallereigenfunction will be used to determine the stability proper-
effect, as is verified by brute force equilibrium reconstructionties as a function of variations in the plasma profiles. It
and stability analysis: should be emphasized in this procedure that only this one

In this paper we build upon the method of profile varia- ballooning eigenvalue equation need be solved.
tions and make the realization that it is not necessary to To study the effect of increasing pressure gradient we
re-solve the ballooning equation for the semianalyticallyfollow HN, who applied the method of profile variations to
constructed equilibria. Whether ballooning stability will im- stellarators, and introduce variations in the pressure profile
prove or degrade as the pressure gradient is increased can |g)) and rotational-transform profile(), at a selected sur-
inferred from information obtained directly from the original face y=yy, of the form
equilibrium. An expression for how the ballooning eigen-

value depends on variations in the pressure gradient and av- P(#) = p(¥) + udp(y), (7)
erage shear is derived.
Following Hegna and Nakajinfahereafter HN, we con- W) = o) + puly) )

sider an equilibrium expressed in Boozer coordinates
(¢, 0,0), being the toroidal flux function, the poloidal angle, whereu is a small expansion parameter and barred quantities
and the toroidal angle, respectivéfyln these coordinates, include the effect of the variations. The auxiliary variajle

the magnetic field takes the form =(¢— i)/ p is used to ensure that the variations in the pres-
sure gradient and average shear@(#), whereas the varia-
B=VyXxX V(0-)=GVi+IVOI+hVy, (1) tion in the pressure and rotational transform @). The

. . rationale for imposing such variations is that it is the pres-
WheTet(‘”) Is the rotat'|0nal transfornG(zp) and! () are .the sure gradient and shear, rather than the pressure and rota-

Sional transform that directly influences ballooning stability.

surface ¢, and the functionh(,0,¢), is related to the . . . .
! : N In the following, the notatiodp’ =ddp/dy, &t' =dde/dy (but
pressure-induced parallel currents, the Pfirsch-Schluter Cur":dp/dap,t’:dt/dzp) is used.

rents. Given this representation of the magnetic field, it is th All physically relevant quantities are similarly varied.

;:rcl)ordlnﬁ'tg _transformatlom(zp, 0,0) which implicitly defines The variations are constrained by requiring that the system
€ equiiibrium. satisfy Vp=J X B and that the magnetic field strength be

wheIrE(;r:xpllZ)l;::Ig trzzefieall(rjl%ilﬁe \;?lr;?;?;; ?o;tsgi'éioin;oz; gt,he undisturbed to lowest order. The coordinate transformation is
) — N . .
field line, the leading order solution for the fluid displace- "e" 8SX=X(¥,6,0)+udX(y, 6,0), with basis vectors

menté is governed by an ordinary differential equation along Ew: e+ dy X, (9)
the field lin¢

9,Pd, £+ QE= yRE, 2) €y =€yt udydX, (10)
where y=-w? is the local eigenvalue and the ballooning co- ;= e+ udoX. (12)

efficients are given

For consistency, bots andl are varied similar tg andz,
2

P B g2 3 and h requires order unity variations. THe(1) quantity in
B g 9 ' (3) the basis vector variations igdx, which is expanded in a
basis defined by the magnetic field
—
Q=2p"VY(G +ol)(kn+ i), 4) 9 &x BX V v
e 9% _cg+pi Yyt (12)

where R= \@_ZP,p’ =dp/dy is the pressure gradieng?”
=V -V, \gis the Jacobiary,, x4 are the normal and geo- Expressions foC, D, andM are provided by HN. The term
desic curvatures, and is the integrated local shear, D is particularly relevant and it is determined by the equation
) 3,D=6¢'d,D,=8p’d,Dp With
L:f dn's(7n). (5) 1 1 1
7w 3,Dy = —<W —ﬂg 7,,) , (13
The local shear is written as fﬁ /g™ ? ’
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where 47%$Q=$dA$d/Q is the flux surface averagg,is the
ratio of the Pfirsch-Schluter current to the pressure gradient

3,Dp = (14)
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dy

B(Sgp/ = a_p,Rg_ [6',75Pp,<9,7 + (SQp/ - ‘}/5Rp/]§, (19)
dy

ngt’ = ﬁRg_ [aﬂaptraﬂ-F 6Qt’ - ’yéRt’]gi (20)

A==(J=$J))/p'V’, and V' is the average Jacobian. From whereB=[4,Pd,+Q-R]. The second-order derivatives are

Eq. (6), it can be shown that the local shear I@4) varia-
tions and takes the fors=s+ &' +6¢'9,D, — 6p’d,D,,, and
the integrated local shear is written as

L=L+d6'L,+p'Ly, (15
whereL, =7+D, andL, =-D.

As far as the ballooning equation is concerned, it is only
the local shear, and of courpé and+’, that is altered by the
variations. In particular, the normal and geodesic curvatures
ka=[(b.V)b-Vy1/g"" and k4=[(b-V)b-BX V¢]/B? as
defined by HN, are unchanged to lowest order, since from
Egs. (9) and (11) the variations in the unit vector in the
direction of the magnetic fieldh=(ze,+e,)/[re,+€] and
Vy=(e,x &)/ g areO(w).

Due to the localized nature of the ballooning equation, it
is sufficient to restrict attention to the single surfate .

As such, Eq(15) is exact. Also, the analytic variations. Egs.
(7) and(8) are of such a form thaip’ and 6’ are zero order,
O(1), in w. It follows that thedp’?,dp’ 8¢/, and &' terms

appearing inL? and elsewhere are al€®(1), and it is con-
sistent to keep all these terms. In fact is it necessary to keep
the op’?, 8p’ &', and 8¢’ terms to capture the essence of the
second stable region.

All the information required to solve the ballooning
equation for the perturbed system is now known; however,
rather than solve for the eigenvalue numerically, we can
make further progress analytically. The profile variations al-
ter the coefficients of the eigenvalue equation, and eigen-

then given by

2

Y
ap? = <§|c9,75ppr2&,7 +8Qp2 - ’)/5Rp72|§>

+ <§|z9,75ppr&,, + &?pr - ’y&Rpr|5§pr>

- j—;«a RI6E,) +(€l5R, |£), 21)

Py
T = <§|(9 5Pp’1’& + 6Qp’t’ -

5R”
ap de Y pt|§>

+(&3,0Py 0, + 8Qp
+ <§|(?7;6Pt’(97] + 5Q1,’

— yORy|8&,)
- 75Rz’| 6§p’>

- j—;«fl RI6E,) + (€l0R.1)

- %«sl RI6&,) + (€l Ry|8), (22

52
L =(80,0P 20, - YR

+ (§,0P 20, + 0Qq = yoR | 86,1)

- %«ﬂRl 5E,) +(El0R.19). (23

value perturbation theory is applicable. Note that the follow-In the above equationpP ’_ZLva 0P, =2LL,, 6Pp2

ing perturbation analysis is distinct from the Greene and:L ”
Chance construction of neighboring equilibria and does not- Kg )+2p’ \’g(G+tI)Kg o'

depend on the formal expansion parameter For small
variationsép, ¢, the perturbed eigenvalue is written as

Jy v, 827 2, Y
Sy=—==6p + — ’ " Se!
Y &p’ép z?t 7p2P c7p'¢9t’a3 ¢
L Py
+ o (16)

Using the shorthand notatiodé,|F| &) [ ERED =& REd,
the first-order derivatives are given by

J
a—; = (&, 0Py 3, + 5Qy — yORy|®), (17)

d
= (80,0000, 8 = YR, (18)

6Prr—2L L 5Pr2 L

Qpr = 2Vg(G+t|)(Kn
3Qu=2p \g<G+zl>Kg o
Qpr2=2\ (g+t|)Kg p» _ and Sgprt,—Z\r (G+t|)Kg
Throughout we us®= g °P, R o =\g P Ry —\g 2P, -

These derivatives depend only on the initial equilibrium
and the unperturbed eigenvalue-eigenfunction pair. Once
they have been calculated, the influence of pressure gradient
and average shear variations on ballooning stability is
known, and the marginal stability boundary, defined by
v+3dy=0, may immediately be determined from HG.6).
Furthermore, noting that positivg indicates instability, and
that increasing pressure gradient correspondspte<0, the
following criteria are obtained.

Criterion (1). For a small increasedp’, the eigenvalue
v will increase ifdy/dp’ <0 and decrease ify/dp’ >0.

Criterion (2). A second stable region is indicated if
Pyl dp'2<0.

To consider a realistic stellarator equilibrium, we use the
VMEC (Ref. 13 code to compute an equilibrium. To solve

To calculate the second-order derivatives, it is required tdhe ballooning equation, we adopt a finite difference method,

determine the first-order variationgg, and &¢,, in the
eigenfunction, which are solved from
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' ' genvalue equation exactlythat is numerically at 200

] X 200 points on theé &', 5p’) space is compared to the sta-
bility curve obtained from Eq(16), which required a single
eigenvalue equation to be solved. The quantitative agreement
between the semianalytic expression Ef6) and the nu-
merical value is very good, particularly considering the large
variation in(&t’,8p’) ~ (+',p’). The small difference in these
curves is due to higher order corrections,
0O(8p'®),--+,0(8¢'3), to the eigenvalue estimate.

The eigenvalue perturbation theory is valid for discrete
(nondegenerajecigenvalues and as such the theory is valid
only for the unstable spectrurfthough discretization will
or T eliminate the continuous spectruniThis problem may be
I ‘ . avoided by adjusting the pressure gradient using the method

0.00 _1.29 Y of profile variations to find an unstable eigenmode. The sta-

p' bility diagram may then be based on this point.

FIG. 1. Comparison of stability boundary obtained from the exact eigen- The ?nalys.ls IS CompIEtely general and ap_pl_lcable to axi-

value solution(solid) with that obtained from Eq16) (dotted. The location symmetric devices such as tokamaks, where it is known that
of the original(unstablg equilibrium surface is indicated with a +. shaped configurations possess stronger second stable regions.

The method has been applied to a variety of stellarators with

. . ) ) similar satisfactory results to that presented here. The analy-

along a selected field line on the “full grid” according 4o sjs presented in this paper may be of great benefit to stellar-

=-n.+(-1A, with the grid spacingA=7./N chosen to 4o optimization routines and future stellarator designs, ex-

give about 100 grid points along the field line per poloidal isting stellarator experiments, and also to the study of

transit, with the boundary conditiorg=£,n.1=0, and where  microinstabilities which employs a similar eikonal approach.
7. IS chosen sufficiently large to contain the mgdeveral

poloidal transits The equation to be solved becomes a set ofla\CKNOWLEDGMENTS
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