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An expression determining how variations in the pressure gradient and average magnetic shear
affect ballooning stability for a stellarator equilibrium is presented. The procedure for determining
the marginal stability boundaries, for each field line, depends only on the equilibrium and a single
ballooning eigenfunction calculation. This information is sufficient to determine if increasing
pressure gradient is stabilizing or destabilizing and to predict whether the configuration possesses a
second stable region. ©2004 American Institute of Physics. [DOI: 10.1063/1.1779227]

An economically viable fusion reactor must sustain
high-pressure, stable equilibria. It is often predicted that the
short wavelength pressure-driven instability, the ballooning
mode, will be the instability that limits the obtainable plasma
stored energy. This paper will present an expression describ-
ing how ballooning stability will vary as an arbitrary three-
dimensional equilibrium is varied and predicts whether a
configuration will possess a second stable region, in which
equilibria may possess arbitrarily large pressure gradients
and not be limited by ballooning instability. The technique
depends on a two-stage approach. Initially, the method of
profile variations is used to construct families of neighboring
magnetostatic equilibria.1,2 Subsequently, a perturbation ap-
proach is employed to estimate the effect these variations
have on the ballooning eigenvalue.

Second stability is the paradoxical phenomenon where
increased pressure gradient can stabilize ballooning modes.
The effect of second stability has long been known in the
(axisymmetric) tokamak community,1 but it is not clear how
the (nonaxisymmetric) stellarator will behave. The three-
dimensional geometry of stellarators gives rise to increased
complexity in equilibrium and stability calculations. Indeed,
the complexity requires equilibrium and stability studies to
be performed numerically at significant computational cost, a
fact which highlights the importance of this work that ana-
lytic predictions of stability can be derived.

An equilibrium is obtained when the Lorentz force bal-
ances the pressure-gradient force,J3B= =p. The equilib-
rium is determined by the plasma boundary, the pressure
profile, and an additional profile quantity such as the current
density or rotational transform. The rotational transformi-
measures the pitch of the magnetic field lines as they twist
around the torus. By considering a small displacement, of the
form jsxd exps−ivi-d, from an equilibrium, linear stability is
determined by an eigenvalue equation, −v2rj=Fsjd, where
F=J3dB+dJ3B− =dp. If this equation allows a growth
rate such thatv2,0, the perturbation will grow.

To study ballooning modes, the WKB eikonal represen-

tation j= ĵexpfinSg is employed,3,4 where n is the (large)
toroidal mode number,k = =Ssxd is the wave vector, and to
lowest order in 1/n it is assumed thatk ·B=0. The stability
condition reduces to an eigenvalue problem, the ballooning

equation, which is local to a field line and simpler to solve
numerically. Of primary importance is the boundary between
stable and unstable equilibria: the marginal stability bound-
ary.

In this paper we consider how the stability of an arbi-
trary equilibrium will vary, as the equilibrium itself is varied.
In particular, an analytic expression for how the ballooning
growth rate, of a selected field line with given radial wave
vector, depends on small variations in the pressure gradient
dp8 and rotational-transform gradient(the average magnetic
shear) di-8 is derived. This expression allows the marginal
stability boundary for the selected field line in the given
equilibrium to be determined immediately, and can also pre-
dict the existence, or otherwise, of the second stable region.

Recent work on the topic of second stability has indi-
cated that some stellarator configurations do possess second
stability,5 and that some do not.6 The question thus arises:
what property of the configuration determines whether a sec-
ond stability region will exist?

The “brute-force” approach is to numerically compute
an equilibrium and solve the ballooning eigenvalue equation.
The pressure is then increased and the process repeated. This
process is tedious and imparts little insight. More important
perhaps is that this method cannot ascertain whether, beyond
a region of instability, there lies a second stable region.

A better approach, the method of profile variations, was
introduced by Greene and Chance1 for axisymmetric con-
figurations. They considered variations in the pressure gradi-
ent and average shear at a selected magnetic surface in the
equilibrium. The pressure gradient and average shear have a
crucial impact on ballooning stability, as the presence of
pressure gradients in regions of unfavorable curvature is the
cause of ballooning instability, while shear is the dominant
stabilizing mechanism. The equilibrium itself is then ad-
justed to preserve force balance, and a family of semianalytic
neighboring equilibria is constructed. For each such con-
structed equilibrium, the ballooning equation may be re-
solved numerically(exactly) and marginal stability diagrams
constructed. Such diagrams are widely used to study toka-
mak stability, and recently the analysis has been extended to
stellarator geometry.2,7 This method eliminates the need to
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recompute the equilibrium, and illuminates the role of the
local magnetic shear.

The mechanism for second stability was determined to
be that pressure-induced variations in the parallel current,
Ji=J ·B /B2, cause variations in the local shear, which may
strengthen the stabilizing force in regions of unfavorable cur-
vature. A related pressure-induced stabilization phenomenon
that should be mentioned is when increased pressure alters
the geometry of the configuration.8–10 While this mechanism
can modify the stability properties, it is generally a smaller
effect, as is verified by brute force equilibrium reconstruction
and stability analysis.11

In this paper we build upon the method of profile varia-
tions and make the realization that it is not necessary to
re-solve the ballooning equation for the semianalytically
constructed equilibria. Whether ballooning stability will im-
prove or degrade as the pressure gradient is increased can be
inferred from information obtained directly from the original
equilibrium. An expression for how the ballooning eigen-
value depends on variations in the pressure gradient and av-
erage shear is derived.

Following Hegna and Nakajima,2 hereafter HN, we con-
sider an equilibrium expressed in Boozer coordinates
sc ,u ,zd, being the toroidal flux function, the poloidal angle,
and the toroidal angle, respectively.12 In these coordinates,
the magnetic field takes the form

B = = c 3 = su − i-zd = G = z + I = u + h = c, s1d

wherei-scd is the rotational transform,Gscd andIscd are the
poloidal current outside and the toroidal current inside the
surface c, and the functionhsc ,u ,zd, is related to the
pressure-induced parallel currents, the Pfirsch-Schlüter cur-
rents. Given this representation of the magnetic field, it is the
coordinate transformationxsc ,u ,zd which implicitly defines
the equilibrium.

Employing the angle variablesa=u−i-z, and h=z,
wherea labels the field line andh labels position along the
field line, the leading order solution for the fluid displace-
mentj is governed by an ordinary differential equation along
the field line4

]hP]hj + Qj = gRj, s2d

whereg=−v2 is the local eigenvalue and the ballooning co-
efficients are given by2

P =
B2

gcc + gccL2, s3d

Q = 2p8ÎgsG + i-Idskn + kgLd, s4d

where R=Îg2P,p8=dp/dc is the pressure gradient,gcc

= =c ·=c ,Îg is the Jacobian,kn,kg are the normal and geo-
desic curvatures, andL is the integrated local shear,

L =E
hk

h

dh8ssh8d. s5d

The local shear is written as

s= i-8 +
]

] h
SGgcu − Igcz

Îggcc D , s6d

wheregcu=ec ·eu andgcz=ec ·ez. This is a Sturm–Liouville
eigenvalue equation with boundary conditionjs±`d=0. To
determine stability, it is necessary to determine the largest
eigenvalueg. In the following, we will solve the ballooning
equation for a prescribed equilibrium and determine the un-
stable eigenvalue and its eigenfunction. Subsequently, this
eigenfunction will be used to determine the stability proper-
ties as a function of variations in the plasma profiles. It
should be emphasized in this procedure that only this one
ballooning eigenvalue equation need be solved.

To study the effect of increasing pressure gradient we
follow HN, who applied the method of profile variations to
stellarators, and introduce variations in the pressure profile
pscd and rotational-transform profilei-scd, at a selected sur-
facec=cb, of the form

p̄scd = pscd + mdpsyd, s7d

i-̄scd = i-scd + mdi-syd, s8d

wherem is a small expansion parameter and barred quantities
include the effect of the variations. The auxiliary variabley
=sc−cbd /m is used to ensure that the variations in the pres-
sure gradient and average shear areOs1d, whereas the varia-
tion in the pressure and rotational transform areOsmd. The
rationale for imposing such variations is that it is the pres-
sure gradient and shear, rather than the pressure and rota-
tional transform that directly influences ballooning stability.
In the following, the notationdp8=ddp/dy,di-8=ddi- /dy (but
p8=dp/dc ,i-8=di- /dc) is used.

All physically relevant quantities are similarly varied.
The variations are constrained by requiring that the system
satisfy =p=J3B and that the magnetic field strength be
undisturbed to lowest order. The coordinate transformation is
written asx̄=xsc ,u ,zd+mdxsy,u ,zd, with basis vectors

ēc = ec + ]ydx, s9d

ēu = eu + m]udx, s10d

ēz = ez + m]zdx. s11d

For consistency, bothG and I are varied similar top and i-,
and h requires order unity variations. TheOs1d quantity in
the basis vector variations is]ydx, which is expanded in a
basis defined by the magnetic field

] dx

] y
= CB + D

B 3 = c

B2 + M
=c

gcc . s12d

Expressions forC, D, andM are provided by HN. The term
D is particularly relevant and it is determined by the equation
]hD=di-8]hDi-8−dp8]hDp8 with

]hDi-8 =
1

R 1/gcc

S 1

gcc −R 1

gccD , s13d
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]hDp8 =
V8sG + i-Id

R 1/gcc

S l

gccR 1

gcc −
1

gccR 1

gccD , s14d

where 4p2rQ;rdurdzQ is the flux surface average,l is the
ratio of the Pfirsch-Schlüter current to the pressure gradient
l=−sJi−rJid /p8V8, and V8 is the average Jacobian. From
Eq. (6), it can be shown that the local shear hasOs1d varia-
tions and takes the forms̄=s+di-8+di-8]hDi-8−dp8]hDp8, and
the integrated local shear is written as

L̄ = L + di-8Li-8 + dp8Lp8, s15d

whereLi-8=h+Di-8 andLp8=−Dp8.
As far as the ballooning equation is concerned, it is only

the local shear, and of coursep8 andi-8, that is altered by the
variations. In particular, the normal and geodesic curvatures
kn=fsb .=db ·=cg /gcc and kg=fsb ·=db ·B3 =cg /B2, as
defined by HN, are unchanged to lowest order, since from
Eqs. (9) and (11) the variations in the unit vector in the
direction of the magnetic fieldb=si-eu+ezd / ui-eu+ezu and
=c=seu3ezd /Îg areOsmd.

Due to the localized nature of the ballooning equation, it
is sufficient to restrict attention to the single surfacec=cb.
As such, Eq.(15) is exact. Also, the analytic variations. Eqs.
(7) and(8) are of such a form thatdp8 anddi-8 are zero order,
Os1d, in m. It follows that thedp82,dp8di-8, and di-82 terms

appearing inL̄2 and elsewhere are alsoOs1d, and it is con-
sistent to keep all these terms. In fact is it necessary to keep
thedp82,dp8di-8, anddi-82 terms to capture the essence of the
second stable region.

All the information required to solve the ballooning
equation for the perturbed system is now known; however,
rather than solve for the eigenvalue numerically, we can
make further progress analytically. The profile variations al-
ter the coefficients of the eigenvalue equation, and eigen-
value perturbation theory is applicable. Note that the follow-
ing perturbation analysis is distinct from the Greene and
Chance construction of neighboring equilibria and does not
depend on the formal expansion parameterm. For small
variationsdp,di-, the perturbed eigenvalue is written as

dg =
] g

] p8
dp8 +

] g

] i-8
di-8 +

]2g

] p82dp82 +
]2g

] p8 ] i-8
dp8di-8

+
]2g

] i-82di-82. s16d

Using the shorthand notation,kj1uFuj2lejRjdh=ej1Rj2dh,
the first-order derivatives are given by

] g

] p8
= kju]hdPp8]h + dQp8 − gdRp8ujl, s17d

] g

] i-8
= kju]hdQi-8]h + dQi-8 − gdRi-8ujl. s18d

To calculate the second-order derivatives, it is required to
determine the first-order variations,djp8 and dji-8, in the
eigenfunction, which are solved from

Bdjp8 =
] g

] p8
Rj − f]hdPp8]h + dQp8 − gdRp8gj, s19d

Bdji-8 =
] g

] i-8
Rj − f]hdPi-8]h + dQi-8 − gdRi-8gj, s20d

whereB=f]hP]h+Q−gRg. The second-order derivatives are
then given by

]2g

] p82 = kju]hdPp82]h + dQp82 − gdRp82ujl

+ kju]hdPp8]h + dQp8 − gdRp8udjp8l

−
] g

] p8
skjuRudjp8l + kjudRp8ujld, s21d

]2g

] p8 ] i-8
= kju]hdPp8i-8]h + dQp8i-8 − gdRp8i-8ujl

+ kju]hdPp8]h + dQp8 − gdRp8udji-8l

+ kju]hdPi-8]h + dQi-8 − gdRi-8udjp8l

−
] g

] p8
skjuRudji-8l + kjudRi-8ujld

−
] g

] i-8
skjuRudjp8l + kjudRp8ujld, s22d

]2g

] i-82 = kju]hdPi-82]h − gdRi-82ujl

+ kju]hdPi-82]h + dQi-8 − gdRi-8udji-8l

−
] g

] i-8
skjuRudji-8l + kjudRi-8ujld. s23d

In the above equation,dPp8=2LLp8, dPi-8=2LLi-8, dPp82

=Lp8
2 , dPp8i-8=2Lp8Li-8, dPi-82=Li-8

2 dQp8=2ÎgsG+i-Idskn

+kgLd+2p8ÎgsG+i-IdkgLp8, dQi-8=2p8ÎgsG+i-IdkgLi-8,
dQp82=2Îgsg+i-IdkgLp8, and dQp8i-8=2ÎgsG+i-IdkgLi-8.
Throughout we useR=Îg2P, Rp8=

Îg2Pp8 ,Ri-8=
Îg2Pi-8 ,¯.

These derivatives depend only on the initial equilibrium
and the unperturbed eigenvalue-eigenfunction pair. Once
they have been calculated, the influence of pressure gradient
and average shear variations on ballooning stability is
known, and the marginal stability boundary, defined by
g+dg=0, may immediately be determined from Eq.(16).
Furthermore, noting that positiveg indicates instability, and
that increasing pressure gradient corresponds todp8,0, the
following criteria are obtained.

Criterion (1). For a small increase −dp8, the eigenvalue
g will increase if]g /]p8,0 and decrease if]g /]p8.0.

Criterion (2). A second stable region is indicated if
]2g /]p82,0.

To consider a realistic stellarator equilibrium, we use the
VMEC (Ref. 13) code to compute an equilibrium. To solve
the ballooning equation, we adopt a finite difference method,
as described by Sanchezet al.14 The eigenfunction is repre-
sented by a discrete set ofs2N+1d points ji equally spaced

Phys. Plasmas, Vol. 11, No. 9, September 2004 Criteria for second stability for ballooning modes… L55

Downloaded 30 Aug 2004 to 147.210.28.207. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



along a selected field line on the “full grid” according tohi

=−h`+si −1dD, with the grid spacingD=h` /N chosen to
give about 100 grid points along the field line per poloidal
transit, with the boundary conditionsj1=j2N+1=0, and where
h` is chosen sufficiently large to contain the mode(several
poloidal transits). The equation to be solved becomes a set of
2N−1 linear equations of the form

Pi+s1/2d

D

sji+1 − jid
D

−
Pi−s1/2d

D

sji − ji−1d
D

+ Qiji = gRiji .

Here,Qi andRi are calculated on the full grid athi, whereas
Pi+s1/2d is calculated on the half gridhi +D /2. This is a matrix
equation,Mj=gj, whereM is tridiagonal. The largest eigen-
value and its eigenfunction are then solved using standard
numerical routines.14 The same finite difference approxima-
tion is suitable for calculating what amounts to be inner
products appearing in Eqs.(17)–(23) and the matrix inver-
sion in Eqs.(19) and (20).

Shown in Fig. 1 is the stability diagram for a three field
period, quasipoloidal stellarator-tokamak hybrid studied by
Wareet al.5 The ratio of plasma pressure to magnetic pres-
sure isb=2.41%. The VMEC representation of the equilib-
rium contains the harmonicsn=0,7 for m=0 andn=−7,7
for m=1,12, where 100 radial surfaces have been used, and
the Boozer coordinate representation contains the harmonics
n=0,56 form=0 andn=−56,56 form=1,103. For this dia-
gram, the symmetric field linea=0 on thec=0.1 surface has
been selected, with the “ballooning-angle”hk=0. The mar-
ginal stability curve obtained by re-solving the perturbed ei-

genvalue equation exactly(that is numerically) at 200
3200 points on thesdi-8 ,dp8d space is compared to the sta-
bility curve obtained from Eq.(16), which required a single
eigenvalue equation to be solved. The quantitative agreement
between the semianalytic expression Eq.(16) and the nu-
merical value is very good, particularly considering the large
variation insdi-8 ,dp8d,si-8 ,p8d. The small difference in these
curves is due to higher order corrections,
Osdp83d ,¯ ,Osdi-83d, to the eigenvalue estimate.

The eigenvalue perturbation theory is valid for discrete
(nondegenerate) eigenvalues and as such the theory is valid
only for the unstable spectrum(though discretization will
eliminate the continuous spectrum). This problem may be
avoided by adjusting the pressure gradient using the method
of profile variations to find an unstable eigenmode. The sta-
bility diagram may then be based on this point.

The analysis is completely general and applicable to axi-
symmetric devices such as tokamaks, where it is known that
shaped configurations possess stronger second stable regions.
The method has been applied to a variety of stellarators with
similar satisfactory results to that presented here. The analy-
sis presented in this paper may be of great benefit to stellar-
ator optimization routines and future stellarator designs, ex-
isting stellarator experiments, and also to the study of
microinstabilities which employs a similar eikonal approach.
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FIG. 1. Comparison of stability boundary obtained from the exact eigen-
value solution(solid) with that obtained from Eq.(16) (dotted). The location
of the original(unstable) equilibrium surface is indicated with a +.
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