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Abstract. We develop a multiple interface variational model, comprising multiple
Taylor-relaxed plasma regions separated by ideal magnetohydrodynamic (MHD)
barriers. A principal motivation is the development of a mathematically rigorous
ideal MHD model to describe intrinsically three-dimensional equilibria, with non-
zero internal pressure. A second application is the description of transport barriers
as constrained minimum energy states. As a first example, we calculate the plasma
solution in a periodic cylinder, generalizing the analysis of the treatment of Kaiser
and Uecker (2004 Q. J. Mech. Appl. Math. 57, 1–17), who treated the single inter-
face in cylindrical geometry. Expressions for the equilibrium field are generated,
and equilibrium states computed. Unlike other Taylor relaxed equilibria, for the
equilibria investigated here, only the plasma core necessarily has reverse magnetic
shear. We show the existence of tokamak-like equilibria, with increasing safety
factor and stepped-pressure profiles.

1. Introduction
The existence of three-dimensional (3D) equilibria with smooth pressure gradients
has been a long-standing and unresolved issue [1]. The problem occurs because,
in general, flux surfaces form only at irrational rotational transform ι, where no
magnetic islands exist. As such, ∇p = 0 in all regions except at irrational ι. Across
this surface a pressure difference can be supported. Taylor relaxation (see [2] and
references therein) describes a plasma that has passed through a phase where strong
global overlap of magnetic islands (e.g. due to tearing modes) has allowed the
magnetic field to evolve to a minimum energy state, subject to the conservation
of magnetic helicity and toroidal flux, and the presence of a perfectly conducting
wall. In such states the pressure gradient is zero, and the magnetic field B satisfies
the Beltrami equation [2]

∇ × B = µB (1.1)

with the Lagrange multiplier µ below some critical value µT , which depends only
on the vessel. Taylor’s model was developed to describe a strongly turbulent reverse
field pinch. In more quiescent systems such as tokamaks and stellarators, global
island overlap does not occur. Thus, relaxation is, at worst, local. In regions where
the rotational transform is strongly irrational, island overlap is suppressed. Such re-
gions can act as robust ideal MHD barriers between different Taylor relaxed states,
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thus leading to equilibria with stepped pressure profiles. A principal motivation is
the development of a rigorous solution to a 3Dmagnetic equilibrium problem, which
remains an unsolved magnetic containment theory problem [1]. Such a stepped
pressure-profile equilibrium is also apparent, however, in a partially relaxed or
locally minimum energy state and somay explain ab initio the existence of transport
barriers in toroidal magnetic confinement experiments. Other theories exist to
describe the subsequent formation of transport barriers (e.g. shear flow suppression
of turbulence [3] or chaotic magnetic field line dynamics [4]). Importantly, the
model proposed here is not offered as an accurate physical picture, but rather
as one which is well-posed within ideal MHD, and thus worth examining before
attempting a more elaborate study.
Our working builds principally upon a variational model developed by Spies

et al. [5], which comprised a plasma/vacuum/conducting wall system. In [5] the
theory is applied to a plasma slab equilibrium, with boundary conditions designed
to simulate a torus. Later analysis by Spies [6] extended the plasmamodel to include
finite pressure. More recently, Kaiser and Uecker [7] analyzed the finite pressure
model in cylindrical geometry.

2. Multiple interface plasma vacuum model
We generalize the analysis of Kaiser and Uecker [7] to an arbitrary number N
of Taylor relaxed states, each separated by an ideal MHD barrier. The system is
enclosed by a vacuum, and encased in a perfectly conducting wall. The energy
functional can be written

W = U −
N∑

i=1

µiHi/2 −
N∑

i=1

νiMi. (2.1)

Setting the first variation to zero yields the following set of equations

Pi : ∇ × B = µiB, pi = constant, (2.2)

Ii : n · B = 0, 〈pi + 1/2B2〉 = 0, (2.3)

V : ∇ × B = 0, ∇ · B = 0 (2.4)

W : n · B = 0 (2.5)

where Pi, Ii are the ith plasma region and interface (or ideal MHD barrier), and
V,W are the vacuum region and wall, respectively. Also, µi is the Lagrange
multiplier in each region, pi the pressure in each region, n a unit vector normal
to the plasma interface, and 〈x〉 = xi+1 − xi denotes the change in quantity
x across the interface Ii. The boundary conditions on n · B arise because each
interface and the conducting wall is assumed to have infinite conductivity. In turn,
these imply the flux constraints ψtR = constant and Ψp

V = constant during Taylor
relaxation, where the subscripts R are labels for each region and V denotes the
vacuum only, and the superscripts p, t label the fluxes as poloidal and toroidal,
respectively. Given the vessel with boundary W, the interfaces Ii, and the magnetic
field B, (2.2)–(2.5) constitute a free boundary problem for pi. A stability assessment
of this configuration is the subject of a future publication.
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3. Cylindrical equilibria
In addition to providing an illustrative example of multiple-interface equilibria,
cylindrical equilibria provide a simple template upon which to explore complicated
stability limits. A similar approach was taken by Ho and Prager [8], in their
exploration of current driven stability limits in partially relaxed reverse field pinch
configurations. To compute solutions in cylindrical geometry, we use the co-ordinate
system (r, θ, z), with equilibrium variations permitted only in the radial direction.
Following Kaiser and Uecker we also use normalize the plasma–vacuum boundary
to r = 1, and assume that the cylinder is periodic in the z direction, with periodicity
L. In this system, solutions to (2.2)–(2.5) can be written in vector notation B =
{Br(r), Bθ(r), Bz(r)} as

P1 : B = {0, k1J1(µ1r), k1J0(µ1r)}, (3.1)

Pi : B = {0, kiJ1(µir) + diY1(µir), kiJ1(µir) + diY1(µir)}, (3.2)

V : B = {0, BV
θ /r, BV

z }, (3.3)

where ki, di ∈ �, and J0, J1 and Y0, Y1 are Bessel functions of the first kind of
order 0, 1, and second kind of order 0, 1, respectively. The terms BV

θ and BV
z

are constants. The constant d1 is zero in the plasma core P1, because the Bessel
functions Y0(µ1r) and Y1(µ1r) have a simple pole at r = 0 [9].
The equilibrium problem can be prescribed by the 4N +2 parameters describing

the magnetic field profile and the radial position of the barriers. That is,

{k1, ... , kN , d2, ... , dN , µ1, ... , µN , r1, ... , rN−1, rw, BV
θ , BV

z } (3.4)

where ri are the radial positions of the N ideal MHD barriers, and rw is the radial
position of the conducting wall. Equivalently, the equilibrium can be constrained
by the safety factors and magnetic fluxes. That is, the 4N + 2 quantities

{Ψt
1, ... ,Ψt

N ,Ψp
1, ... ,Ψp

N ,Ψt
V ,Ψp

V , qi
1, ... , qi

N , qo
1, ... , qo

N } (3.5)

where qi
i and qo

i are the safety factor on the inside and outside of each interface. In
cylindrical geometry the safety factor expands as

qi
i =

2πri

L

Bz,i(ri)
Bθ,i(ri)

, qo
i =

2πri

L

Bz,i+1(ri)
Bθ,i+1(ri)

, (3.6)

In the core, we note that the function rJ0(µ1r)/J1(µ1r) has positive radial deriv-
ative regardless of the value of µ1, and so the plasma core will necessarily exhibit
reverse magnetic shear. The toroidal and poloidal fluxes compute as follows:

Ψt
i =

∫ ri

ri−1
Bz(r)r dθ dr =

2π

µi
[kirJ1(rµi) + dirY1(rµi)]

ri

ri−1
, (3.7)

Ψp
i =

∫ ri

ri−1
Bθ(r)Ldr =

2π

µi
[kiJ0(rµi) + diY0(rµi)]

ri

ri−1
. (3.8)

Finally, in the vacuum region, the fluxes compute as

Ψt
V = BV

θ Lln(rw), Ψp
V = BV

z π(r2
w − 1) (3.9)

The plasma pressure can be expressed in terms of the field strengthB at the barriers.
Equations (3.6)–(3.9) form a mapping from the magnetic field profile factors and

interface positions, constraints (3.4), to the safety factors andmagnetic fluxes, (3.5).
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Figure 1. Example of a stepped-pressure plasma profile, with five ideal MHD barriers,
showing : (a) a shaded contour plot of the poloidal flux ψp , (b) the pressure profile p, (c) the
safety factor q versus position. Panels (d)-(g) show p, q, and toroidal, and poloidal current
densities Jθ , Jφ as a function of normalized poloidal flux, where ψn is zero at the core, and
unity at the plasma-vacuum interface. In panel (a), plasma-plasma interfaces are shown as
dotted lines, the plasma-vacuum interface is dashed, whilst the plasma-wall boundary is
solid.

An analytic form for the inverse mapping is not simply available. To compute the
B field coefficients and interface positions, given the safety factor and magnetic
flux, we have used the method of least squares. Starting in the core, Ψp

1,Ψ
t
1 and qi

1

can be solved for k1, µ1, r1. In the plasma body, Ψ
p
i ,Ψ

t
i and qi

i , q
o
i can be solved for

ki, di, µi, ri. Finally, the position of the conducting wall rw is found by solving the
equation

r2
w − 1 −

(
Ψt
V

Ψp
V

BV
θ

BV
z

)
L ln rW = 0. (3.10)

Figure 1 shows an example with five ideal barriers. This particular example has
been chosen with no change in q across the interfaces, and hence no surface cur-
rents. The equilibrium is described by the constraints: rw = 1.5, BV,θ = 0.24 T,
BV,z = 0.40 T, ri = {0.2, 0.4, 0.6, 0.8, 1.0}, ki = {0.22, 0.25, 0.29, 0.31, 0.35}, and
di = {0.0, −0.010, −0.019, −0.050, −0.060}. This example demonstrates the exist-
ence of multi-interface, tokamak-like solutions, which do not require the existence
of surface currents. By increasing the number of interfaces, the pressure can be
approximated arbitrarily close to an experimental profile.

4. Conclusions
We have formulated a model for equilibria that comprise multiple Taylor-relaxed
plasma regions, each of which is separated by an ideal MHD barrier of zero width.
The system is enclosed by a vacuum region, and encased by a perfectly conducting
wall. For these equilibria, the safety factor in the core necessarily decreases mono-
tonically. For regions outside of the innermost ideal barrier, solutions can be con-
structed with increasing safety factors, and decreasing pressures. A tokamak like



Stepped pressure profile equilibria and stability 1171

example of a multiple-interface equilibria is provided. These equilibria exhibit many
of the same qualities observed in high-performance H-mode discharges. In future
work, the stability of the multiple interface equilibria presented here will be studied.
We will also generalize our equilibria model to three dimensions, in which the shape
of all surfaces are free.

Acknowledgments
We are grateful for the support of the Australian Research Council, through grant
DP0452728.

References

[1] Grad, H. 1967 Toroidal containment of a plasma. Phys. Fluids 10, 137–154.
[2] Taylor, J. B. 1986 Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58,

741–763.
[3] Burrel, K. H. 1997 Effects of E×B velocity shear and magnetic shear on turbulence and

transport in magnetic confinement devices. Phys. Plasmas 4, 1499–1518.
[4] Misguich, J. H. 2001 Dynamics of chaotic magnetic lines: Intermittency and noble

internal transport barriers in the tokamap. Phys. Plasmas 8, 2132–2138.
[5] Spies, G. O., Lortz, D. and Kaiser, R. 2001 Relaxed plasma–vacuum systems Phys.

Plasmas 8, 3652–3663.
[6] Spies, G. O. 2003 Relaxed plasma–vacuum systems with pressure. Phys. Plasmas 10,

3030–3031.
[7] Kaiser, R. and Uecker, H. 2004 Relaxed plasma–vacuum states in cylinders. Q. J. Mech.

Appl. Math. 57, 1–17.
[8] Ho, Y. L. and Prager, S. C. 1988 stability of a reversed field pinch with resistive and

distant boundaries. Phys. Fluids 31, 1673–1680.
[9] Abramowitz, M. and Stegun, I. A. 1972 In: Handbook of Mathematical Functions. New

York: Dover.




