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Cantori are the invariant sets remaining after the destruction of KAM surfaces and create partial barriers to
transport in chaotic regions. Cantori may be approximated by high-order periodic orbits; however, field line
tracing methods for locating periodic orbits perform poorly in chaotic regions. To approximate cantori for
continuous flow dynamics, high-order periodic orbits are determined by Lagrangian variational methods. The
method is robust to chaos, converges quadratically, and the computational cost scales linearly with the peri-
odicity length of the orbit. Minimizing-periodic orbits with periodicities in the tens of thousands, that closely
approximate cantori, have been constructed.
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I. CONTINUOUS FLOWS AND MAPPINGS

This article will give an explicit construction of cantori
for 1 1

2-dimensional Hamiltonian systems, where the La-
grangian for the continuous-time dynamics is given. Such
systems provide the simplest realization of chaos. Examples
of such systems include a particle in the field of two travel-
ing waves �1�, and the dynamics of magnetic field lines in
toroidal plasma confinement devices �2�. This article seeks to
illustrate that, for chaotic systems, Lagrangian variational
principles �3� provide a robust approach to determining the
dynamics.

It is possible to reduce the dynamics of such systems to
that of a mapping on a Poincaré section �4�, the mapping
being determined by numerical integration. It is of course
much simpler if one is given the mapping directly, and the
most studied realization of chaotic systems is the standard
map: f��0 ,�0�= ��1 ,�1�, where �1=�0−k sin�2��0� /2� and
�1=�0+�1. Models of chaotic dynamics, such as the stan-
dard map, are invaluable for understanding the generic fea-
tures of chaotic systems �see the review paper by Meiss �5��;
however, physical systems of practical interest most often
present themselves as continuous-time systems.

Continuous time introduces additional numerical com-
plexity. For the standard map, the mapping on the plane is
determined to machine precision by a single trigonometric
calculation, an addition, and a subtraction. For the
continuous-time case, the mapping is obtained by numerical
integration. Consider for example the fourth-order Runge-
Kutta algorithm: four calculations per step h are required to
obtain a single step error of O�h5�. To achieve a total inte-
gration error after N�O�h−1� steps that is comparable to
machine precision, thousands of steps and tens of thousands
of calculations may be required: this is impractical, consid-
ering that thousands of iterations of the map may be re-
quired, and larger integration errors must be tolerated. How-
ever, a defining property of chaos is that nearby trajectories
separate exponentially at a rate given by the Lyapunov ex-
ponent. Arbitrarily small errors will grow and ultimately
overwhelm the trajectory following methods for finding pe-
riodic orbits. A more sophisticated integration algorithm is
required.

II. INVARIANT PHASE-SPACE STRUCTURES

The identification of invariant phase-space structures such
as cantori, plays an important role in understanding the long-
time behavior of dynamical systems. If the system is inte-
grable, a continuous foliation of the three-dimensional phase
space by invariant, two-dimensional surfaces exists, on
which the frequency �- �winding number, or rotational trans-
form in toroidal plasma confinement terminology� may be
rational or irrational. Consequently, the behavior of the sys-
tem is known for all time: in suitable coordinates, the action
coordinate is constant, and the angle coordinate increases
linearly with time at a rate given by the frequency �6�.

The continuous foliation by invariant surfaces is broken
by even just a small perturbation. The rational two-
dimensional manifolds, really a continuous family of peri-
odic orbits, are the first to be destroyed, and chains of islands
will form. For each such surface, two periodic orbits will
survive: the Poincaré-Birkhoff periodic orbits. These orbits
are �i� the minimizing orbit, which is generically unstable
and hyperbolic, and �ii� the minimax orbit, which, for small
perturbation, is stable and elliptic �4,5,7,8�.

Some of the irrational surfaces are also destroyed by per-
turbation, but the Kolmogorov-Arnold-Moser �KAM� theo-
rem shows that many will survive �9,10�. Exactly which
KAM surfaces survive for a given perturbation can be deter-
mined by Greene’s residue criterion �11�.

For a slightly perturbed system, a discrete selection of the
KAM surfaces can be used to partition the phase space into
separate regions: trajectories cannot cross the KAM surfaces.
A construction of “discrete action-angle coordinates,” using
a finite number of KAM surfaces as coordinate surfaces, has
been implemented for chaotic magnetic fields that are rel-
evant to plasma confinement devices �12�. On these surfaces,
the dynamics is again trivial, being restricted to a two-
dimensional surface, where a suitable angle coordinate in-
creases linearly. Between the KAM surfaces, the motion can
be intricate and trajectories may wander seemingly randomly
in phase space. However, there are invariant structures that
restrict transport, even in the chaotic regions where no KAM
surfaces exist.

III. CANTORI

As the perturbation passes a critical value, a KAM surface
will evaporate into an invariant set, with irrational frequency,
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and with an infinite sequence of “gaps” �13–15�. Each such
set is called a cantorus �15�. In contrast to the KAM surfaces,
the cantori are leaky: trajectories can pass through the gaps.
However, depending on the system, cantori can severely re-
strict the transport and thus effectively partition even the
chaotic regions of phase space �16�.

Cantori may be labeled by their frequency, and they are
approximated by high-order, minimizing-periodic orbits,
where the �rational� frequency of the periodic orbits approxi-
mates the �irrational� frequency of the cantori. To locate
high-order periodic orbits in chaotic regions of phase space,
Lagrangian variational principles are employed �3,17�. Such
methods are based on a discretization of the action integral.
Hamilton’s principle of stationary action is used to determine
trajectories.

IV. LAGRANGIAN VARIATIONAL PRINCIPLES

Reflecting our background in toroidal plasma confinement
�18�, the dynamical flow we consider is that of a toroidal
magnetic field, which is analogous to a 1 1

2-dimensional
Hamiltonian system. The magnetic field lines are those par-
ticular curves C that are stationary curves of the action inte-
gral �19�.

SC = �
C

A · dl , �1�

where A is the magnetic vector potential, which is analogous
to the Lagrangian.

We use a vector potential in canonical form

A = � � � − � � � , �2�

where ��� ,� ,�� is the field-line Hamiltonian, and �, �, and
� are the radial, poloidal angle, and toroidal angle coordi-
nates, which are in turn analogous to the momentum, posi-
tion, and time coordinates of Hamiltonian systems. The
Hamiltonian is written in integrable plus perturbation form

� =
1

2
�2 + �

m,n
�m,n���cos�m� − n�� . �3�

This Hamiltonian is quite general, and in essence is equiva-
lent to the two-wave model of Escande �1�.

This vector potential is “stellarator symmetric,” equiva-
lent to time-reversal symmetry �20�, by virtue of ��−� ,−��
=��� ,��. This simplifies the numerics, as the periodic orbits
that must be found lie on symmetry lines and they are equal
to their image under the symmetry operation �21�.

Setting each of the Fréchet derivatives of the action inte-
gral Eq. �1� to zero results in the field-line equations:

�̇=B� /B�, �̇=B� /B�.
For numerical work, the continuous curve C must be rep-

resented by a finite number of parameters. It is sufficient, and
simplest, to use a piecewise-linear representation, Ch. Be-
tween �i= i�� and �i+1, the curve Ch��� is defined �=�i

+ ��i+1−�i���−�i� /��, for ��=2�q /N, and h is shorthand
for the grid resolution, h=��. The curve is restricted to be
�p ,q� periodic, where p and q are integers, by constraining

�N=�0+2�p. The radial coordinate is identified as �= �̇���,
where the dot denotes the derivative with respect to �, and is
piecewise constant: �i= ��i+1−�i� /��. The radial curve is
discontinuous, but it is an integrable function and sufficient
for the action integral to be defined.

At first, the piecewise-linear approximation seems crude,
but the action integral becomes piecewise directly solvable;

S = �
i
�

�i

�i+1

���̇ − ��d� = �
i

Si��i,�i+1� , �4�

where

Si��i,�i+1� =
1

2
�i

2�� + �
m,n

�m,n��i�� sin�m� − n��

m�̇ − n
�

�i

�i+1

.

�5�

The discretized action integral is a rapidly computable func-
tion of N-independent parameters, 	�0 ,�1 , . . . ,�N−1
, and all
that remains is to find stationary curves. As the grid resolu-
tion h is decreased, the piecewise-linear Ch curve will more
closely approximate the true, smooth continuous curve C,
with the error scaling as O�h2�. In the following sections,
typically four straight line segments per 2� are used to ap-
proximate the continuous curves.

The basis of the variational approach is to compute the
line integral of the Lagrangian along a curve. It is not re-
quired to follow trajectories, and thus the approach is im-
mune to the exponential increase of errors.

A variety of techniques can be used to find stationary
curves. For example, the gradient method of Aubry may be
used �22�, where starting from an initial integrable guess, the
trial curve is allowed to slide down the direction of the action
gradient until it reaches the minimum. Following Schellnhu-
ber et al. �23�, we adopt a more efficient Newton method.

V. MULTIDIMENSIONAL NEWTON METHOD

We now find curves for which the action gradient is zero.
The action gradient vector is �S= ��S /��1 ,�S /��2 , . . . �T,
where

�S

��i
= �2Si−1��i−1,�i� + �1Si��i,�i+1� , �6�

where �1Si��i ,�i+1�, �2Si��i ,�i+1� denote the derivatives of
Si��i ,�i+1� with respect to the first and second argument, re-
spectively. The derivative matrix of the action gradient,
called the Hessian, is a cyclic, tridiagonal matrix of the sec-
ond derivatives of Si.

Time-reversal, or stellarator symmetry �20� allows two
important simplifications. The first is that periodic orbits lie
in symmetry lines �11,21�. A symmetry line for this Hamil-
tonian is L1= 	�� ,�� :�=0,�=0
. To find a periodic orbit on
this line we may set �0=0. This removes a degree-of-
freedom in the piecewise-linear representation of the curve,
and reduces the cyclic tridiagonal matrix to a standard tridi-
agonal matrix. Additional symmetry lines include L2
= 	�� ,�� :�=� ,�=0
 and L3= 	�� ,�� :�=0,�=�
. All the
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periodic orbits required for this article are found on these
lines.

The second important simplification to be exploited is that
the periodic orbits on these symmetry lines are identical to
their reflections under the symmetry operation. For example,
the curve passing through L1 satisfies ��−��=−����. This
entails �N−i=2�p−�i for these periodic orbits, and this
halves the number of independent parameters in the
piecewise-linear representation.

A multidimensional Newton scheme for finding zeros of
the action gradient can now be applied. To calculate the
Newton correction to an approximate curve, it is required to
invert the Hessian. Being tridiagonal, this inversion is per-
formed in O�N� operations; thus, the computational cost of
constructing the periodic orbits scales linearly with the peri-
odicity length. An initial guess for the Newton iterations is
obtained by tracking the periodic curves from integrability as
the perturbation is increased. These techniques have been
implemented, and both the minimizing and minimax periodic
orbits, with periodicities in the tens of thousands, can be
quickly determined even for strongly chaotic fields.

VI. APPLICATION TO MODEL HAMILTONIAN

For illustration, we consider the Hamiltonian
�= 1

2�2−k�cos�2�−��+cos�3�−2���. Here, k represents the
perturbation parameter. For k=0, the field is integrable, with
frequency profile �-=�. For nonzero k, primary islands �level
1� form at �-= p1 /q1=1/2 and �-= p2 /q2=2/3. A smaller, sec-
ondary island �level 2� will form at the mediant of these
rationals, �-= p3 /q3= �p1+ p2� / �q1+q2�=3/5. Additional is-
lands �level 3� will form at 4 /7, the mediant of 1 /2 and 3/5,
and at 5 /8, the mediant of 3 /5 and 2/3. By continually con-
structing the mediants level by level, the Farey tree of ratio-
nals is constructed �5�, and island chains will form at each
rational between 1/2 and 2/3.

For this Hamiltonian, for positive k, we observe that L1 is
a dominant symmetry line: along this line all island chains
have a minimax periodic orbit. The odd periodicity island
chains have a minimizing periodic orbit on L2, and even
periodicity chains have a minimizing periodic orbit on L3.
These may be distinguished by the eigenvalues of the full,
cyclic tridiagonal Hessian: the minimax Hessian has a single
negative eigenvalue, and the minimizing Hessian has only
positive eigenvalues.

As the perturbation parameter k is increased, the islands
will grow and at some point overlap, and the invariant curves
between will be destroyed. The invariant curves that are most
immune to island overlap are associated with irrationals that
are furthest from low-order islands �11,24,25�. Every irratio-
nal number may be expressed as an infinite continued frac-
tion �26�,

�- = a0 +
1

a1 +
1

a2 +
1

a3 + ¯

= �a0,a1,a2,a3, . . . � , �7�

where the integers aj are called the partial quotients. By trun-
cating at the jth partial quotient, a rational approximation

pj /qj = �a0 ,a1 ,a2 , . . . ,aj� �called the jth convergent� to the
irrational is obtained. The convergents form a sequence of
consecutively better approximates. Consequently, the mini-
mizing periodic orbits of the convergents form a sequence of
consecutively better approximations to a given cantori. Irra-
tionals with continued fraction representations terminating in
infinitely many 1’s, �a0 , . . . ,aj ,1

	�, are called noble irratio-
nals. KAM surfaces with noble frequency are typically the
most robust to chaos �11�, and the cantori with noble fre-
quency are often the most severe barriers to transport �27�.

The critical function kc��-�, shown in Fig. 1, is defined as
the value of k at which a given invariant surface, with fre-
quency �-, is destroyed. Rational surfaces are destroyed for
k�0, so kc��-�=0 for every rational �-�� 1

2 , 2
3
�. To compute

the critical perturbation for irrational frequency, Greene’s
residue criterion is applied �11�. The residue, which is related
to the stability of the periodic orbits, may be calculated for
continuous-time systems by field line following Ref. �12�, a
possible task for fields not too chaotic; alternatively, it is
related to the determinant of the Hessian �8�. To construct
Fig. 1, the critical k for irrationals of the form
�a0 ,a1 ,a2 , . ,aj ,n ,1	�, where the a’s are integers selected to
give the six levels of the Farey tree spanned by 1/2 and 2/3,
and n=1,2 , . . ., is computed. Such irrationals are noble, and
the sequences converge to the rationals �a0 ,a1 ,a2 , . . . ,aj� as
n increases: e.g., �0,1 ,1 ,n ,1	� converges to 1/2 as n→	.
Numerically, the critical k for irrational �- is approximated by
the value of k for which the residue of the tenth convergent
to �- is equal to 0.25, and the required periodic orbits are
found by field-line tracing along the L1 symmetry line.

The critical function shows which irrationals are the most
robust to chaos. In this case, the �0,1 ,1 ,3 ,1	� KAM surface
appears to have the maximum critical k, kc=2.039
10−3.
For k slightly greater than this value, the �0,1 ,1 ,3 ,1	� can-
tori is likely to be the most important barrier to transport.

To illustrate the properties of the cantori, a set of irratio-
nals is selected in Table. I. These are chosen to be the most

FIG. 1. Critical perturbation, kc, for sequences of noble irratio-
nals converging to low-order rationals.
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noble irrationals between the rationals comprising the first
five levels of the Farey tree: 1

2 , 5
9 , 4

7 , 7
12 , 3

5 , 8
13 , 5

8 , 7
11 , and 2

3 .
Also given in Table. I is the critical k for each.

Cantori for the selected irrationals are shown in Fig. 2 for
k=2.10
10−3, a value slightly greater than the maximum kc.
The cantori were approximated in the minimizing-periodic
orbits with periodicities given by the 22nd convergent of
each irrational �Table II�.

Also shown in Fig. 2 are some low-order periodic orbits
�minimizing orbits are shown with a 
 and the minimax are
shown with a ��. As can be seen, the gaps in the cantori are
related to the structure of the nearby periodic orbits.

To give a graphical illustration of the effect of cantori on
field-line transport, field lines slightly perturbed along the

unstable manifolds of the 1
2 and 2

3 orbits are followed for
100 000 iterations. At this value of k, some of the cantori are
supercritical, i.e., k is significantly greater than kc. The su-
percritical cantori have little effect on transport. In the near-
critical case, the cantori appear to lie on curves �with holes�.
These cantori play the greatest role in restricting transport,
and near-critical cantori hug the boundaries of the red and
green regions.

The effect of cantori on radial transport can be quantified.
First, the flux across a rational island chain �p/q is computed
by constructing a surface containing the minimizing X and
minimax O orbits: the flux is then simply the difference in
action between these orbits, �p/q=SO−SX �5,27�. The flux
through the island chains, with periodicities comprising the
first ten levels of the Farey tree spanned by 1/2 and 2/3, is
shown in Fig. 3. This figure is similar to Fig. 56 of Meiss �5�.
The flux through a cantorus is given by the limit of the flux
through the convergent island chains �pj/qj

as the degree j of
convergent increases. For the cantori shown in Fig. 2, for
k=2.10
10−3, the limiting flux is given in Table. I.

For a KAM surface, where k�kc, the flux is zero. For the
near-critical case, k slightly greater than kc, the flux is ex-
pected to satisfy the scaling given for the standard map

TABLE I. Selected irrationals and critical k. TABLE II. 22nd convergents and flux.

FIG. 2. �Color online� Poincaré plot showing cantori �black
dots�, low-order periodic orbits �minimizing 
, minimax ��, and
100 000 iterations of trajectories starting from near the 1

2 and 2
3

unstable periodic orbits �shown on the right side only�. The hori-
zontal � axis extends from �0,2��, and is symmetric about �=�,
and the vertical � axis extends from � 1

2 , 2
3
�. The perturbation pa-

rameter is k=2.10
10−3.
FIG. 3. Flux �p/q against periodicity �-= p /q, up to the first ten

levels of the Farey tree, for k=2.10
10−3.
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�pj/qj
=C
 j, where C is a constant and 
�4.339 �27�. The

dependence of the flux �pj/qj
on the degree j of convergent

approximation is shown in Fig. 4, for k=2.04
10−3, a value
slightly greater than the critical k for the �0,1 ,1 ,3 ,1	� can-
torus. The near-critical scaling is confirmed for the conver-
gents of the �0,1 ,1 ,3 ,1	� cantorus.

For the supercritical cantori, the convergence with respect
to j is rapid, so that quite low-order convergents give an
accurate estimate of the limiting flux. A detailed investiga-
tion of the local scaling of the flux for standard like maps has
been performed by Buric and Todorovic �28�, and similar
results are expected here.

To give a graphical illustration that the approximating
minimizing-periodic orbits approximate the selected cantori,
the minimizing-periodic orbits of the �0,1 ,1 ,3 ,1	� conver-
gents are shown in Fig. 5, for k=2.10
10−3. The gap struc-
ture of the approximating, minimizing-periodic orbits has
converged, as is clearly visible in this figure.

Finally, the error associated with a piecewise-linear ap-
proximation to a smooth curve is expected to satisfy
E�h���h2, for some constant � and small enough h. Defin-
ing the error E�h� as the root mean square of the difference
between the curve Ch��� and the curve of higher resolution
Ch/2���, calculated at the midpoints of the Ch grid
�= �i+ 1

2
�h, it is confirmed by Fig. 6, that the error scales

as expected. For this plot, the selected cantori, at the per-
turbation k=2.10
10−3, are each approximated by the 15th
convergent: �-1�733/1144, �-2�555/877, �-3�377/610, �-4
�542/885, �-5�788/1343, �-6�521/898, �-7�665/1186,
and �-8�809/1474. Even for the supercritical cantori, the
piecewise-linear representation is satisfactory. This is not
surprising as the cantori remain smooth, continuous-integral
curves of the continuous-time flow.

VII. DISCUSSION

We have presented a method for locating periodic orbits
for continuous-flow dynamics that �i� because of the varia-
tional formulation, is robust to chaos, �ii� converges quadrati-

cally by virtue of Newton’s method, and �iii� for which the
computational cost scales with the length of the periodic or-
bit. Periodic orbits in the tens of thousands have been con-
structed for a strongly chaotic field. These orbits are suffi-
cient to approximate the cantori.

The method is general, but the primary motivation for this
work is to examine in detail the effect of cantori on toroi-
dally confined plasmas. Toroidal confinement devices, par-
ticularly stellarators, will in general possess regions with
chaotic magnetic fields, though every attempt is made to
eliminate islands and the associated chaos �29�. Because of

FIG. 4. Flux �pj/qj
against degree of convergent approximation

j for each of the selected cantori, for k=2.04
10−3. The dashed
line satisfies �=C
 j for 
=4.339.

FIG. 5. Convergent minimizing-periodic orbits to the
�0,1 ,1 ,3 ,1	� cantori, for the perturbation k=2.10
10−3. The hori-
zontal � range and vertical � range for each plot are �3.1315927,
3.1515927� and �0.5863, 0.5867�, respectively.

FIG. 6. Piecewise-linear approximation error against grid reso-
lution. The dashed line has a gradient equal to 2.
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the large parallel transport coefficients, the structure of the
magnetic field dominates various physical mechanisms, such
as heat and particle transport, and pressure relaxation, and
thus it is quite likely that cantori will have an impact on
numerical algorithms that seek to model these effects.
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