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A coordinate system adapted to the invariant structures of chaotic magnetic fields is constructed. The
coordinates are based on a set of ghost-surfaces, defined via an action-gradient flow between the
minimax and minimizing periodic orbits. The construction of the chaotic coordinates allows an
expression describing the temperature gradient across a chaotic magnetic field to be derived. The
results are in close agreement with a numerical calculation. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3063062�

We continue1 the study of anisotropic heat transport
across a chaotic magnetic field B, where the heat flux vector
is given as

q = ��bb · �T + �� � T �1�

for b=B / �B�, and T is the temperature. The parallel and per-
pendicular transport are characterized by the diffusion coef-
ficients �� and ��, which we take to be constants. In a region
with no significant sources or sinks, the steady-state tempera-
ture is determined by the second-order differential equation

� · q = 0. �2�

For fusion relevant plasmas,2 the heat transport is highly
anisotropic: �� /�� �10−10. It is instructive to consider the
“ideal-limit,” where the parallel transport is infinite com-
pared to the perpendicular transport: �� /�� =0. The condi-
tion � ·q=0 then requires that along each field-line B ·�T
=�B2, where � is a constant, and the only acceptable value is
�=0. To see this, consider integrating along a field-line from
some initial point, where T=T�0�, to obtain T���=T�0�
+��0

�B2d�, where � parametrizes distance along a field-line,
��	B ·�. If the field-line returns to the initial point after a
nonzero distance �p/q, for the temperature to be a single val-
ued position of space we require T��p/q�=T�0�. Thus, for
periodic orbits we must have �=0. An irrational field-line
that lies on a flux surface comes arbitrarily close to the initial
point after an arbitrarily long distance, and irregular field-
lines come arbitrarily close to any point in a finite volume,
including the initial point. Thus, we must have �=0 almost
everywhere, and in the limit that �� /�� =0, the temperature
is invariant under the field-line-flow, B ·�T=0.

This paper will explore the hypothesis that if coordinates
�s ,� ,�� can be adapted to the invariant structures of the
magnetic field, the steady-state temperature will take the
form T=T�s�. This is justified a posteriori by deriving an
expression for the temperature gradient and showing that this
expression leads to an accurate description of the tempera-
ture profile, as compared to a numerical solution.

Chaotic coordinates. Generally, the temperature is repre-
sented as a function of three-dimensional space. For ex-
ample, in toroidal geometry T=T�� ,� ,��, where � is an
arbitrary radial coordinate �e.g., � labels flux surfaces of a
nearby integrable field�, and � ,� are poloidal and toroidal

angles, respectively. If the field possesses a smooth set of
nested flux surfaces �i.e., the field is integrable�, labeled with
radial coordinate �, magnetic coordinates can be constructed
globally so that B ·��=0. The temperature is then constant
on the flux surfaces: T=T���. For slightly chaotic fields, flux
surfaces with sufficiently irrational rotational-transform are
guaranteed to survive sufficiently small perturbation by vir-
tue of the Kolmogorov–Arnold–Moser �KAM� theorem,3,4

and these can be used as a framework for the radial coordi-
nate. An irrational surface is the closure of an irrational field-
line, so in the limit �� /�� =0, the temperature must be con-
stant on the KAM surfaces. In a region where no true
invariant surfaces exist, a more esoteric construction of ra-
dial coordinate surface is required.

Previously,1 numerical evidence was given suggesting
that the steady-state temperature contours in a chaotic field
will coincide with a set of so-called ghost-surfaces,5 which
are a class of almost-invariant surface.6,7 Motivated by this
result, here we extend the construction of magnetic coordi-
nates to chaotic magnetic fields.

The chaotic coordinates that we construct are adapted to
structures invariant under the field-line flow; namely, the pe-
riodic orbits and the irrational field-lines. We consider fields
with the so-called twist condition, so that the shear is no-
where zero. When an integrable field is destroyed by pertur-
bation, the Poincaré–Birkhoff theorem4 states that at least
two periodic orbits will survive, which for small perturbation
are the stable and unstable periodic orbits. Additionally, the
Aubry–Mather theorem4 tells us that the irrational field-lines
will also survive perturbation. If the irrational field-line er-
godically covers a surface, the surface is a KAM surface. If
not, the irrational field-line is called an Aubry–Mather set8,9

or a cantorus.10 The irrational field-lines may be approxi-
mated arbitrarily closely by suitably chosen rational field-
lines, so from practical perspective we need only consider
adapting the chaotic coordinates to the periodic orbits. This
is achieved by constructing a set of rational ghost-surfaces.
�The importance of the irrational field-lines, i.e., the cantori,
will be discussed below.�

Ghost-surfaces are defined using the Lagrangian formu-
lation of magnetic field-line dynamics: magnetic field-lines
are extremal curves C of the action integral11 SC=�CA ·dl.
Constraining attention to �p ,q� periodic curves, where �
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=���� satisfies ��2�q�=��0�+2�p, the stable and unstable
periodic field-lines are the minimax curve �a saddle point of
the action� and the minimizing curve, respectively.4 �Note
that for sufficiently large perturbation, the minimax orbit also
becomes unstable.� At the minimax curve, there exists a
single direction in configuration space along which the ac-
tion integral decreases. By perturbing the minimax orbit in
this direction, then allowing the curve to flow down the
action-gradient to the minimizing periodic orbit, the curve
will trace out a surface, the �p ,q� ghost surface.1,6

Numerical evidence indicates that different ghost-
surfaces, as identified by their periodicity �p ,q�, do not
intersect.1,6 A selection of ghost-surfaces may be used as the
framework for a radial coordinate. The ghost-surfaces are
Fourier decomposed, and a piecewise linear interpolation of
the Fourier harmonics ensures that the interpolated surfaces
do not intersect. Note that each ghost-surface passes through
its respective island chain and necessarily “captures” the
minimax and minimizing periodic orbits. Furthermore, by
selecting ghost-surfaces of sufficiently high periodicity, the
chaotic coordinates may be adapted to the cantori.

The cantori are the action-minimizing irrational field-
lines. They may be approximated arbitrarily closely by the
action-minimizing rational field-lines. Near-critical cantori
are particularly important for understanding transport in cha-
otic fields. By “near-critical” it is meant that perturbation
slightly exceeds the value at which the irrational field-line no
longer traces out a smooth surface; i.e., when the KAM sur-
face is destroyed. Irregular �chaotic� field-lines may pass
across the cantori. However, field-line transport across near-
critical cantori can be extremely slow; thus, these cantori are
effective partial barriers to transport.12 Just as the most irra-
tional �noble� KAM surfaces are most likely to survive
perturbation,13 the noble cantori typically have locally mini-
mal field-line flux and present the most significant impedi-
ment to anisotropic heat transport in chaotic fields. Further-
more, the existence of near-critical cantori �and also the
regions of regular trajectories near stable periodic orbits� vio-
lates the assumptions underpinning the random-walk, diffu-
sive model of field-line transport in chaotic fields,14 and one
is led to a fractional-diffusion approach.15 It is only when the
field is “uniformly” chaotic, i.e., well above the stochastic
threshold, that one may approximate field-line transport as a
random process.

Comparison with numerical solution. To see that the
ghost-surfaces coincide with isotherms, the steady-state so-
lution to the anisotropic heat transport equation is solved
numerically. A model magnetic field is considered,
B=��A, with vector potential A=���−	��, where
	�� ,� ,�� is the field-line Hamiltonian

	 = �2/2 + 

mn

	m,n���cos�m� − n�� . �3�

This magnetic field is stellarator symmetric, which allows
several simplifications �e.g., periodic orbits lie on symmetry
lines16�, but does not alter the characteristic properties of the
chaotic field. For nonzero 	m,n, magnetic islands form around
the stable periodic orbit, and irregular field-lines emerge
from near the unstable periodic orbits. To excite islands at

the �=1 /2 and �=2 /3 rational surfaces, we set 22	2,1

=32	2,3=k, where k is a perturbation parameter. For large
enough k, the region between the �1,2� and �2,3� island
chains is dominated by irregular field-lines and island chains.
A Poincaré plot of the field, with k=4.5�10−3, is shown in
Fig. 1.

A temperature gradient across the chaotic field between
the �1,2� and �2,3� islands is enforced by inhomogeneous
boundary conditions, namely, that T=1.0 on �=0.50 and T
=0.0 on �=0.65, and we study the case where the ratio of
transport coefficients is given: �� /�� =10−10. The strong par-
allel transport is separated from the weak perpendicular
transport by employing locally field aligned coordinates. The
steady-state temperature is solved iteratively using finite dif-
ferences on a high-resolution numerical grid. The numerical
approach is identical to the approach used in Ref. 1.

In Fig. 1, 72 ghost-surfaces between the �1,2� and �2,3�
islands are shown. This selection includes low-order rational
ghost-surfaces, e.g., �p ,q�= �3,5� , �4,7� , and �5,8�, which
pass through the corresponding island chains. The low-order
islands are typically larger �than the higher order islands�,
and if an island exceeds a critical width, 
w���� /���1/4, the
temperature will tend to flatten inside the island.2 In addition,
ghost-surfaces with periodicities approximating various
noble irrationals were selected; e.g., �p ,q�
= �37,66� , �41,71� , and �44,75�. These “irrational” ghost-
surfaces form coordinate surfaces that “fill in the gaps” in the
near-critical cantori. In addition, high-order ghost-surfaces
that lie adjacent to the chaotic separatrices of the low-order
islands are selected. In the strongly anisotropic limit, the
temperature will flatten across the islands and will also adapt
closely to the these “boundary” surfaces lying just outside
the chaotic separatrix, giving the temperature a fractal struc-

FIG. 1. �Color online� Ghost-surfaces �red lines� and corresponding iso-
therms �black lines, only for ��0� are shown for a near-critical chaotic
field. A Poincaré plot is shown with gray dots. The ghost-surfaces and iso-
therms are almost indistinguishable.
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ture. �The term “boundary circle” was introduced to describe
the closest KAM surface next to a chaotic separatrix.17,18�
The near-fractal structure of coordinates matches the near-
fractal structure of the temperature, and this allows a simple
expression for the temperature gradient in chaotic coordi-
nates to be derived.

Semi-analytic solution of temperature profile. To a re-
markable degree, the ghost-surfaces coincide with isotherms,
so we may use the approximation T=T�s�, where s labels the
ghost-surfaces �and their interpolates�. To derive an expres-
sion for the temperature gradient consider the following in-
tegral over a volume bounded by a surface s=const,

d

ds
�

V

� · qdV 	
d

ds
�

�V

q · dS = 0, �4�

where dS=
g�sd�d�. An expression for the temperature
gradient, T�=dT /ds, is derived using Eq. �1�,

dT

ds
=

c

��
 + ��G
, �5�

where 
 is the squared field-line flux across a coordinate
surface and G is an averaged metric quantity,


 =� � d�d�
gBn
2, �6�

G =� � d�d�
ggss, �7�

for Bn	B ·�s / �B� and gss=�s ·�s. The integration constant
c, and a second integration constant that appears when Eq.
�5� is integrated to obtain T�s�, are determined from T�a� and
T�b�, the respective averages of the numerical solution on the
lowermost and uppermost ghost-surfaces shown in Fig. 1.
This allows the profile defined by Eq. �5� to be directly com-
pared with the numerical solution, as shown in Fig. 2. Good
agreement with the numerical solution is obtained.

With �� ���, the temperature gradient given by Eq. �5�
is dominated by surfaces with minimal 
. In our construction
of chaotic coordinates, local maximum temperature gradients
will coincide with the noble cantori. In the ideal limit, infi-
nite gradients are supported on any KAM surfaces that exist
�where 
=0; compare to the ideal equilibrium model de-
scribed by Dewar et al.19�, and the profile will approach a
devil’s staircase. If �� is nonzero, T� will everywhere be
finite, so T�s� will be smooth.

Comments. This paper has presented evidence suggest-
ing that the numerically intensive task of solving highly an-
isotropic heat transport in chaotic fields may be reduced to
the task of constructing chaotic-coordinates. Computation-
ally, this is much simpler. There are, however, several ques-
tions that remain outstanding. For example, for a given cha-
otic field, what is the best selection of ghost-surfaces to serve
as the coordinate framework? The selection of ghost-surfaces
shown in Fig. 1 was empirical—a set of surfaces was chosen
that resulted in a good fit to the temperature profile. To be of
practical value however, it is required to a priori determine
which set of ghost-surfaces is optimal. Implicit in the intro-

ductory discussion was that the perpendicular diffusion �� is
negligible, so the temperature exactly adapts to the fractal
structure of the field, and thus also to the chaotic coordinates.
However, the fine-scale structure of the temperature is
smoothed out as �� increases. The temperature will not com-
pletely flatten across islands less than the critical island
width, and accordingly the temperature will not exactly co-
incide with boundary ghost-surfaces that are too close to
these islands’ separatrices. It would be beneficial to know
how the optimal selection of ghost-surfaces depends on the
ratio �� /��. These questions are the topic of ongoing inves-
tigation.

The agreement between the ghost-surfaces and the iso-
therms shown in Fig. 1, and the agreement between the nu-
merical and reconstructed temperature profile �Fig. 2� is
qualitative. A detailed quantitative comparison will be de-
ferred until a systematic selection of an optimal set of ghost-
surfaces has been derived. We expect to show that the error
between the “exact” numerical profile and the reconstructed
profile can be reliably and systematically reduced.

There exist other constructions of almost invariant sur-
faces that may be suitable for use as the radial framework for
chaotic-coordinates. Ghost-surfaces have been chosen here
as they fit neatly with Lagrangian integration methods, which
provides a robust approach to the construction of cantori in
strongly chaotic fields;20 however, the quantity 
 bears a
striking resemblance to the quadratic-flux functional.7,21 This
suggests that quadratic-flux minimizing surfaces may be
more suitable for organizing anisotropic heat transport.

Finally, we note that Eq. �5� is quite general and inde-
pendent of the construction of chaotic-coordinates. If there is
no local source, the isotherms form a set of nested surfaces
which may themselves be used as coordinate surfaces. In this

FIG. 2. Temperature profile T�s� constructed from Eq. �5� is compared with
the numerical profile with good agreement.
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case, the approximation T=T�s� is exact, and, therefore, so is
Eq. �5�.

This work was supported in part by U.S. Department of
Energy Contract Nos. DE-AC02-76CH03073 and DE-FG02-
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