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Two candidates for “almost-invariant” toroidal surfaces passing through magnetic islands, namely
quadratic-flux-minimizing (QFMin) surfaces and ghost surfaces, use families of periodic pseudo-orbits
(i.e. paths for which the action is not exactly extremal). QFMin pseudo-orbits, which are coordinate-
dependent, are field lines obtained from a modified magnetic field, and ghost-surface pseudo-orbits are
obtained by displacing closed field lines in the direction of steepest descent of magnetic action,

∮
A · dl.

A generalized Hamiltonian definition of ghost surfaces is given and specialized to the usual Lagrangian
definition. A modified Hamilton’s Principle is introduced that allows the use of Lagrangian integration
for calculation of the QFMin pseudo-orbits. Numerical calculations show QFMin and Lagrangian ghost
surfaces give very similar results for a chaotic magnetic field perturbed from an integrable case, and
this is explained using a perturbative construction of an auxiliary poloidal angle for which QFMin
and Lagrangian ghost surfaces are the same up to second order. While presented in the context of 3-
dimensional magnetic field line systems, the concepts are applicable to defining almost-invariant tori in
other 1 1

2 degree-of-freedom nonintegrable Lagrangian/Hamiltonian systems.
Published by Elsevier B.V.

1. Introduction

The understanding of nonintegrable Hamiltonian systems is
greatly simplified if one can construct a coordinate framework
based on a set of surfaces that are either invariant under the
dynamics or, where this is impossible, surfaces that are almost-
invariant. As invariant tori and cantori in nonintegrable systems
can be approximated by sequences of periodic orbits, the theory
of almost-invariant surfaces is built around periodic orbits, which
constitute the remanent invariant sets surviving after integrabil-
ity is destroyed by symmetry-breaking perturbations. We consider
two classes of almost-invariant surfaces, quadratic-flux-minimizing
(QFMin) surfaces [1] and ghost surfaces [2,3].

Almost-invariant tori are important in the theory of magnetic
confinement of toroidal plasmas, in particular to the theory of
transport in chaotic magnetic fields [4], and we set this Letter in
the context of the nonintegrable magnetic fields, B, encountered
in devices without a continuous symmetry. However, as magnetic
field lines are orbits of a 1 1

2 degree-of-freedom Hamiltonian sys-
tem, [5] the discussion is applicable, with appropriate translations
of terminology, to any such system—e.g. in this Letter we use
“magnetic field line” and “orbit” interchangeably.

* Corresponding author.
E-mail addresses: shudson@pppl.gov (S.R. Hudson), robert.dewar@anu.edu.au

(R.L. Dewar).

In Section 2 we introduce our general, arbitrary background
toroidal coordinate system s, θ, ζ , and an auxiliary poloidal angle
Θ(s, θ, ζ ) that allows us to define the quadratic flux in a form
independent of the choice of θ . In Section 3 we introduce the mag-
netic action integral, its first and second variations and Hamilton’s
Principle, while in Section 4 we introduce QFMin and (generalized)
ghost-surface pseudo-orbits as alternative strategies for continu-
ously deforming the action-minimax orbit associated with an is-
land chain into the corresponding action-minimizing orbit.

In Section 5 we present numerical results for field-line Hamil-
tonians of the form χ0(ψ) + εχ1(ψ, θ, ζ ), where the flux function
ψ plays the role of a momentum canonically conjugate to θ , and
ε parametrizes the strength of the perturbation away from the in-
tegrable case described by the action-angle Hamiltonian χ0. Plots
are presented comparing the uncorrected (i.e. with Θ = θ ) QFMin
and Lagrangian ghost curves of Ref. [2], superposed on field-line
puncture plots in a Poincaré surface of section. Two cases with
different strengths of perturbation are shown, both quite strongly
chaotic and both showing that the differences between even un-
corrected QFMin and ghost curves are very small (except for some
higher-order surfaces, in the more strongly chaotic case). This sug-
gests that the two, seemingly very different, approaches to defining
almost-invariant tori may be unified by appropriate choice of Θ ,
and that this will differ from θ by an amount small in ε .

In Section 6 we introduce a modified form of Hamilton’s Prin-
ciple that gives QFMin pseudo-orbits as extremizers of a pseu-
doaction. Section 7 gives the canonical, Hamiltonian form of this

0375-9601/$ – see front matter Published by Elsevier B.V.
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Fig. 1. A sketch of the general curvilinear toroidal coordinate system described in
the text. (Color online.)

action principle, while Section 8 discusses the transformation to
the Lagrangian form. In Section 9 we derive a consistency con-
dition that Θ must satisfy for corrected QFMin surfaces to be
Lagrangian ghost surfaces, finding in Section 10 an expression for
a choice of the auxiliary angle Θ that satisfies this criterion up
to first order in ε . The difference between uncorrected QFMin and
ghost/corrected-QFMin pseudo-orbits is shown indeed to be very
small, O (ε2).

In Section 11 we sketch our finite-element variational method
for numerical construction of QFMin surfaces using the new Hamil-
ton’s Principle introduced in Section 6, and in Section 12 we dis-
cuss the numerical construction of ghost surfaces via Galerkin pro-
jection onto the finite element basis.

Appendix A contains a derivation of the Euler–Lagrange equa-
tion for QFMin pseudo-orbits in the canonical representation, and
Appendix B shows the relation between the generalized definition
of ghost pseudo-orbit given in Section 4 and our more standard
Lagrangian form [2], used in the numerical work and in Section 9.

2. Coordinates and fluxes

As depicted in Fig. 1, we assume a general, essentially arbitrary
curvilinear toroidal coordinate system s(r), θ(r), ζ(r) has been es-
tablished, where r is a point in Euclidean 3-space and θ and ζ

are respectively poloidal and toroidal angles labeling points on the
toroidal isosurfaces of s, nested around the curve along which θ is
singular (s increasing outward). We assume the nonorthogonal ba-
sis {es,eθ ,eζ } ≡ {∇s,∇θ,∇ζ } is right handed, as is its reciprocal
basis {es,eθ ,eζ } ≡ {∂sr, ∂θ r, ∂ζ r}.

The directed infinitesimal area element on an arbitrary surface
Γ is dS ≡ dθ dζ n/n ·∇θ × ∇ζ , where n is the unit normal at any
point on Γ . Thus the net magnetic flux crossing an arbitrary torus
Γ (which we assume to contain the θ -coordinate singularity curve)
is

ϕ1[Γ ] ≡
2π∫
0

2π∫
0

dθ dζ
n ·B

n ·∇θ × ∇ζ
. (1)

This integral is independent of choice of coordinates. In fact the
absence of magnetic monopoles implies that ϕ1 vanishes identi-
cally, so it is independent of the choice of Γ also, whether it be
a magnetic surface (invariant torus of the field-line flow) or other-
wise.

Thus, to measure the amount by which Γ departs from be-
ing a magnetic surface, we are led to define the positive defi-
nite quadratic flux [1], defined with the aid of a new generalized
poloidal angle Θ(s, θ, ζ ),

ϕ2[Γ ] ≡ 1

2

2π∫
0

2π∫
0

dθ dζ
n ·B

n ·∇θ × ∇ζ

n · B

n ·∇Θ × ∇ζ
. (2)

The quadratic flux ϕ2 is independent of the choice of base coordi-
nates s, θ, ζ , but depends on the choice of Θ .

In the numerical work presented in this Letter, Θ has been cho-
sen equal to the given angle θ . However in the formal development
we distinguish it from θ so we can explore the consequences of
making different choices, in particular whether it can be chosen so
that QFMin tori coincide with ghost tori.

3. Magnetic action integral

The field-line action S [6] is a functional of a path C in Eu-
clidean 3-space, points on which we take to be labeled by the
toroidal angle ζ , which thus takes on the role played by time in
a more conventional Hamiltonian system. In this Letter we confine
our attention to paths that are closed loops, with θ increasing by
2π p when ζ increases by 2πq (p and q > 0 being mutually prime
integers), so the average rate of increase of θ along the path is the
rational fraction p/q, where the angular frequency ι- is called the
rotational transform.

The magnetic action is defined by

S[C] ≡
∫
C

A ·dl ≡
2πq∫
0

A · ṙ dζ, (3)

where the single-valued function A(r) is a magnetic vector poten-
tial for the magnetic field, B = ∇ × A, and dl ≡ ṙ dζ is an infinites-
imal line element tangential to C . A superscript dot denotes the
total derivative with respect to ζ , so that ṙ · ∇ζ ≡ 1. Hamilton’s
Principle is the statement that S is stationary, with respect to vari-
ations δr of C , when C is a segment of a physical orbit (in our case
a magnetic field line). If C is an open segment the variations are
to be taken holding the endpoints fixed, but if (as we assume) C
is a closed loop then the variations are unconstrained because the
endpoint contributions cancel. Then, after integration by parts, we
have the expansion for the total change in S

�S =
2πq∫
0

(
δr · δS

δr
+ 1

2
δr · δ2S

δr δr
· δr + · · ·

)
dζ, (4)

where the first functional derivative is given by

δS
δr

≡ es δS
δs

+ eθ δS
δθ

+ eζ δS
δζ

= ṙ × B. (5)

Hamilton’s Principle is now readily verified: The Euler–Lagrange
equation δS/δr = 0 is satisfied if ṙ = B/Bζ , i.e. on a magnetic field
line.

The symmetrized Hessian operator is

2
δ2S
δr δr

= − d

dζ
B × I − I × B

d

dζ
+ ṙ × (∇B)T − (∇B) × ṙ, (6)

where I = eses + eθ eθ + eζ eζ = eses + eθ eθ + eζ eζ is the identity
dyadic and superscript T denotes the transpose.

Note also that variations δr = r(ζ + δζ ) − r(ζ ) = r + ṙ δζ +
1
2 r̈(δζ )2 + · · · that simply relabel the path can be verified to leave

S invariant for arbitrary δζ(ζ ), as expected. Thus, to find a unique
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Fig. 2. A comparison of the intersections of uncorrected QFMin surfaces (thick
dashed lines) and Lagrangian ghost surfaces (thin lines) with the surface ζ = 0, with
the choices s = ψ , Θ = θ described in Section 7. The two almost-invariant surface
definitions are almost indistinguishable in this moderately chaotic case, described
in Section 5. A Poincaré plot (red dots) is also shown. (Color online.)

minimizer, we must suppress this degree of freedom in the al-
lowed variations. To this end we constrain δr to the tangent plane
of the poloidal surface of section ζ = const at r, denoting the con-
strained variation by �r ≡ es δs + eθ δθ . (Provided B, es and eθ are
linearly independent, the two components of the Euler–Lagrange
equation, δS/δs ≡ es · ṙ × B = 0 and δS/δθ ≡ eθ · ṙ × B = 0 imply
ṙ × B = 0, so the third component of the Euler–Lagrange equation,
δS/δζ ≡ eζ · ṙ × B = 0, is redundant.)

4. Ghost and QFMin surfaces

In an integrable system a continuous family of (p,q)-periodic
orbits, each extremizing the action, exists, defining an invariant
torus with rotational transform p/q. However such invariant tori
are not structurally stable—small perturbations to the system de-
stroy integrability (see e.g. Fig. 2), leaving only isolated action-
extremizing periodic orbits. In fact (assuming a twist condition
holds), by the Poincaré–Birkhoff theorem [7], only two distinct
periodic orbits survive in a given (p,q) island chain, namely the
action-minimizing orbit,1 and an action-minimax orbit. The min-
imizing orbit is a hyperbolically unstable “X-point” orbit in the
chaotic separatrix region of the island chain while the minimax
orbit threads the centers of the islands. The minimax orbit may be
elliptically stable, or, after a period-doubling bifurcation, become
unstable but continue as a (p,q) hyperbolic orbit accompanied by
a daughter (2p,2q) elliptic orbit that does not affect the following
discussion. An almost-invariant torus, the “ghostly remnant” of an
invariant torus, is formed from a family of pseudo-orbits, labeled
by a parameter τ , that “fill in” the regions between the minimizing
and minimax orbits so as to form a torus Γ .

The pseudo-orbits of a ghost torus are defined [2] by deforming
the minimax orbit via an action-gradient flow

Dr

Dτ
= −δS

δr
·Pghost, (7)

1 Or action-maximizing orbit, depending on the relative direction of ∇ζ and B—
clearly the sign of S reverses if we reverse the sign of A, and hence B.

where D/Dτ denotes the total τ -derivative at fixed ζ , i.e. D/Dτ ≡
(Ds/Dτ )∂s + (Dθ/Dτ )∂θ , and Pghost is a symmetric nonnegative
dyadic. The most natural choice of Pghost might seem to be Ppol ≡
I − eζ eζ /|eζ |2 projecting onto the poloidal tangent plane at r, as
this is independent of the choice of s and θ . However, as we show
in Appendix B, this does not correspond with that required to re-
cover the usual Lagrangian definition [2] of ghost surfaces.

At the periodic orbits, the action gradient is zero. Beginning
from the minimax orbit, we initially push the curve in the de-
creasing direction (provided by the eigenfunction of the Hessian
with negative eigenvalue) and then evolve the curve according to
the action-gradient flow Eq. (7).

Using Eq. (7) in Eq. (4) we find

DS
Dτ

= −
2πq∫
0

δS
δr

·Pghost · δS
δr

dζ, (8)

so the sequence of pseudo-orbits tends monotonically toward the
minimizing orbit, tracing out a surface, which we call the ghost
surface.

Ghost surfaces display several attractive properties (proved, for
Lagrangian ghost orbits, in the case of symplectic maps [3]; ver-
ified numerically for continuous time/magnetic field systems [2]).
Their intersections with a surface of section are graphs when plot-
ted in canonical phase-space coordinates, so that each line of con-
stant θ crosses the ghost curve only once. They are nonintersect-
ing, and thus a discrete selection of ghost surfaces may be used as
a framework for a generalized action-angle-like coordinate system
for chaotic fields. Furthermore, there appears to be a close cor-
respondence between ghost surfaces and the isotherms resulting
from strongly anisotropic heat-transport in chaotic magnetic fields
[4]. However, as it stands, there is a significant disadvantage to
their construction: the gradient flow vanishes as one approaches
integrability. In this limit, the construction of the ghost surfaces
becomes arbitrarily slow!

A QFMin surface is one that minimizes ϕ2 under deformations
of Γ . In Ref. [1] (see also Appendix A) it is shown that the Euler–
Lagrange equation for this variational principle implies that Γ is
composed of pseudo-orbits tangential to the pseudo field

Bν ≡ B − ν∇Θ × ∇ζ, (9)

where ν ≡ n · B/n · ∇Θ × ∇ζ is constant on each such pseudo-
orbit. Intuitively, the pseudo field is constructed from the true
field by adding a radial field that cancels the radial field caused
by a perturbation away from a neighboring integrable field, while
the poloidal field is unchanged [8]. Although QFMin curves in a
Poincaré section are not guaranteed to have the graph property,
QFMin pseudo-orbits are easier to construct than ghost orbits and
thus it would be advantageous to find a QFMin formulation whose
pseudo-orbits are also ghost orbits.

To construct a rational-rotational-transform QFMin surface we
find periodic pseudo-orbits with rotational transform p/q. We vary
ν continuously over the range for which solutions can be found,
the corresponding pseudo-orbits sweeping out ribbons that may be
joined to form the entire surface Γ . As the range includes ν = 0,
Γ includes the closed field lines, both action-minimizing and min-
imax, associated with the magnetic island chain with the given
rotational transform.

5. Comparison

For illustration we use a model magnetic Hamiltonian (see Sec-
tion 7), χ0 +χ1, consisting of an integrable part, χ0 = ψ2/2, and a
perturbation,
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Fig. 3. A comparison of uncorrected QFMin curves (thick lines) and ghost curves
(thin lines) for a more strongly chaotic case described in the text. Some cases where
QFMin curves violate the graph property are seen. (Color online.)

χ1 =
∑

χm,n(ψ) cos(mθ − nζ ). (10)

We use only two nonzero, ψ-independent, perturbation harmonics,
χ2,1 = 0.0010 and χ3,2 = −0.0005, to drive islands at the ι- = 1/2
and ι- = 2/3 rational surfaces. The degree of chaos induced by the
perturbations is illustrated by a Poincaré plot, shown with red dots
in Fig. 2. Quadratic-flux-minimizing surfaces (thick dashed lines)
constructed as in Section 11 and Lagrangian ghost surfaces (thin
lines) constructed as in Section 12 associated with 31 rationals be-
tween these two islands are shown. We term these QFMin surfaces
uncorrected because no attempt at transforming the coordinate sys-
tem to improve agreement between QFMin and ghost surfaces has
been made (i.e. we have taken Θ = θ ). On the scale of the figure,
the quadratic-flux minimizing surfaces and the ghost surfaces are
indistinguishable.

As the degree of chaos increases, the quadratic-flux minimiz-
ing surfaces and the ghost surfaces appear to deviate, particularly
those associated with the higher order rationals. Increasing the
perturbation amplitude to χ2,1 = 0.0020 and χ3,2 = −0.0010, the
surfaces are shown in Fig. 3.

The close agreement between QFMin curves and ghost curves in
the case of moderate chaos for the coordinate choice used (action-
angle coordinates in the unperturbed system) suggests a coordi-
nate system in which they become identical may not be strongly
perturbed away from action-angle coordinates. Below we point the
way to achieving this unification.

6. Modified Hamilton’s Principle

It has long been known [2,9] that the quadratic flux ϕ2 can be
expressed in terms of action gradient, thus generalizing the QFMin
concept to general Lagrangian/Hamiltonian systems and providing
a link with the ghost surface approach. However, neither approach
so far has provided a variational principle for individual pseudo-
orbits. In this section we present a new and very useful variational
principle for the QFMin pseudo-orbits, modifying Hamilton’s Prin-
ciple by adjoining the constraint

A ≡
∫
C

Θ∇ζ ·dl ≡
2πq∫
0

Θ dζ = const. (11)

This associates with a path r = r(ζ ) an “area” A under the corre-
sponding curve in the (ζ,Θ) plane. By writing Θ = (p/q)ζ + Θ0 +
Θ̃(ζ ), where Θ̃ is a periodic function averaging to 0 and Θ0 is
a constant approximately equal to the value of Θ at which the
pseudo-orbit cuts the section ζ = 0, we get A = 2πqΘ0 + 2π2 pq.
Thus, constraining, A to be constant allows one to select a pseudo-
orbit labeled by Θ0, and

r = rp,q(ζ |Θ0), Θ ∈ [0,2π), (12)

defines a family of paths covering a torus embedded in R
3.

To implement the constraint Eq. (11) using a Lagrange multi-
plier ν we define the pseudoaction

Sν ≡ S − νA, (13)

which is the same as the physical action Eq. (3) with A replaced
by the vector pseudopotential Aν ≡ A−νΘ∇ζ . Thus, the verification
of Hamilton’s Principle for QFMin pseudo-orbits goes through ex-
actly as that in Section 3 for physical magnetic field lines (except
that we must use the restricted variations, δr = �r, so that the
endpoint contribution 2π p δr ·∇ζ vanishes): δSν/δs = δSν/δθ = 0
implies ṙ × Bν = 0, where Bν is the pseudo magnetic field Eq. (9),
as required for QFMin pseudo-orbits, for which ṙ = Bν/Bζ .

7. Hamiltonian formulation

By exploiting gauge freedom we may write A = ψ∇θ −
χ(ψ, θ, ζ )∇ζ , for which S takes the familiar form

S =
∫
C

(ψ dθ − χ dζ ). (14)

This is the canonical form for the vector potential, as the equations
describing the field lines are θ̇ = ∂χ/∂ψ and ψ̇ = −∂χ/∂θ . These
are Hamilton’s equations, with χ the magnetic-field-line Hamilto-
nian. Henceforth we remove the arbitrariness in the radial coordi-
nate s by choosing it to be the flux function ψ , so that s and θ

are now canonically conjugate phase-space variables for the given
magnetic field, and the return map generated by field lines inter-
secting the Poincaré section ζ = 0 is area-preserving.

From Hamilton’s equations, we see that if χ depends only
on ψ , e.g. χ = χ0(ψ), then ψ and θ are action-angle coordinates
[10]: ψ is constant, and θ increases linearly with ζ according to
θ̇ = ι-(ψ). If the transform is rational, θ̇ = p/q for integer p and q,
there exists a continuous family of periodic field lines. Each pe-
riodic field line may be identified, for example, by the poloidal
angle where the field line intersects the Poincaré section ζ = 0.
Together, the periodic field lines form a rational surface. However,
in a nonintegrable system no transformation to action-angle co-
ordinates exists and the Hamiltonian has the more general form
χ = χ0(ψ) + χ1(ψ, θ, ζ ). No matter how small χ1 is, the contin-
uous family of periodic field lines is destroyed, being replaced by
isolated action-minimizing and minimax orbits in an island chain.

In canonical coordinates the QFMin pseudoaction, Eq. (13), is,
from Eq. (14), Sν = ∮

(ψθ̇ − χ − νΘ)dζ , up to O (�r),

δSν =
2πq∫
0

dζ
[
(θ̇ − ∂ψχ − ν ∂ψΘ)δψ

− (ψ̇ + ∂θχ + ν∂θΘ) δθ
]
. (15)

Setting the first variation to zero, we find Hamilton’s equations for
QFMin pseudo-orbits
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θ̇ = ∂ψχν, (16)

ψ̇ = −∂θχν, (17)

where χν ≡ χ + νΘ . That is, νΘ acts as a scalar pseudopoten-
tial that displaces pseudo-orbits poloidally, away from the periodic
orbits found when ν = 0.

8. Lagrangian formulation

An arbitrary trial curve, C , requires both the “position curve,”
θ(ζ ), and the “momentum curve,” ψ(ζ ), to be specified.

It is advantageous to reduce the number of dependent vari-
ables by transforming from the Hamiltonian phase-space descrip-
tion to the Lagrangian configuration-space description in the stan-
dard way, eliminating the momentum ψ in favor of the velocity θ̇

given by Eq. (16). [We assume the “twist condition,” χ ′′
0 (ψ) > 0, to

allow unique inversion to give ψ = Ψν(θ̇, θ, ζ ), so this transforma-
tion may not be possible for systems with nonmonotonic rotational
transform.]

The velocity curve then defines the momentum curve, making
Sν a functional of the position curve alone, while partially extrem-
izing

Sν =
2πq∫
0

dζ Lν(θ, θ̇ , ζ ), (18)

where the pseudo-Lagrangian Lν ≡ Ψνθ̇ −χν(Ψν, θ, ζ ). (The physi-
cal field-line Lagrangian L and action S are obtained as the special
case ν = 0.)

Now the total perturbation of the pseudoaction is of the form

δSν =
2πq∫
0

δθ
δSν

δθ
dζ, (19)

where the Lagrangian pseudoaction gradient is

δSν

δθ
= ∂Lν

∂θ
− d

dζ

(
∂Lν

∂θ̇

)
. (20)

9. Reconciling QFMin and Lagrangian ghost surfaces

We now seek to choose Θ so that QFMin pseudo-orbits are
also Lagrangian ghost pseudo-orbits as defined in Appendix B. First
note that, to reconcile Eqs. (16) and (47), we require ∂ψΘ = 0. That
is,

Θ ≡ Θ(θ, ζ ). (21)

Then Ψν = Ψ , Lν = L − νΘ , ∂Lν/∂θ̇ = ∂L/∂θ̇ , and members of our
family of QFMin pseudo-orbits

θ = θ(ζ |Θ0), (22)

where Θ0 is an as yet arbitrary label [cf. Eq. (12)], satisfy the
Euler–Lagrange equation

δSν

δθ
= δS

δθ
− ν(Θ0)Θθ (θ, ζ ) = 0, (23)

with Θθ(θ, ζ ) ≡ ∂Θ(θ, ζ )/∂θ .
To reconcile QFMin and ghost orbits we require that the family

of pseudo-orbits defined by Eqs. (22) and (23) is the same fam-
ily as is generated by Eq. (48). Thus the labels Θ0 and τ must
be functionally dependent: τ = τ (Θ0), dτ = τ ′(Θ0)dθ . Eliminating
δS/δθ between Eqs. (23) and (48) and observing that DΘ/DΘ0 ≡
(Dθ/DΘ0)Θθ we find the reconciliation condition

DΘ

DΘ0
= − μ(ζ)

τ ′(Θ0)ν(Θ0)

(
Dθ

DΘ0

)2

. (24)

We now define Θ0 so that, for all Θ0,

τ ′(Θ0)ν(Θ0) ≡ −1,

θ(ζ |Θ0 + 2π) ≡ θ(ζ |Θ0) + 2π, (25)

choosing μ(ζ) so that Eq. (24) satisfies the solvability condition that
the integral of both sides with respect to Θ0 over the interval
[0,2π ] must be 2π , giving

μ(ζ) =
[ 2π∫

0

dΘ0

2π

(
∂θ(ζ |Θ0)

∂Θ0

)2
]−1

. (26)

10. Perturbative construction of QFMin-ghost surfaces

For example, to approach this task perturbatively, consider the
Lagrangian of the class corresponding to the case studied numeri-
cally in Section 5

L = θ̇2

2
− ε

∞∑
m,n=−∞

Vm,n exp(imθ − inζ ), (27)

with the reality condition V ∗
m,n = V−m,−n (superscript ·∗ denoting

complex conjugation), and ε the expansion parameter. (The cases
studied in Section 5 thus correspond to the choices V 2,1 = χ2,1/2,
V 3,2 = χ3,2/2, and Vm,n = 0 for {m,n} /∈ {{2,1}, {−2,−1}, {3,2},
{−3,−2}}.)

As the unperturbed system is integrable, the expansions of ν ,
μ, and Θ(θ, ζ ) are of the form

ν = εν1 + ε2ν2 + · · · ,
μ = εμ1 + ε2μ2 + · · · ,
Θ = θ +

∑
m,n

(
εΘ

(1)
m,n + ε2Θ

(2)
m,n + · · ·)exp i(mθ − nζ ), (28)

and of the (p,q) QFMin pseudo-orbits are of the form

θ(ζ |Θ0) = ι-p,qζ + Θ0 +
∑
m,n

(
εθ

(1)
m,n + ε2θ

(2)
m,n + · · ·)

× exp i
[
(mι-p,q − n)ζ + mΘ0

]
,

ψ(ζ |Θ0) = ι-p,q +
∑
m,n

i(mι-p,q − n)
(
εθ

(1)
m,n + ε2θ

(2)
m,n + · · ·)

× exp i
[
(mι-p,q − n)ζ + mΘ0

]
, (29)

where ι-p,q ≡ p/q and ψ ≡ ∂L/∂θ̇ = θ̇ = θζ (ζ |Θ0).
At O (ε) we find μ1 = 0 and

ν1(Θ0) = −
∞∑

m,n=−∞
imδmp,nq Vm,n exp(imΘ0), (30)

where the Kronecker delta δmp,nq selects Fourier coefficients such
that mp = nq, resonant with (p,q) pseudo-orbits.

The O (ε) contributions to the pseudo-orbit and pseudopoten-
tial are given by

θ
(1)
m,n = Θ

(1)
m,n = imδ̄mp,nq Vm,n

(mι-p,q − n)2
, (31)

where δ̄mp,nq ≡ 1 − δmp,nq deletes the resonant components (which
have been absorbed by ν1—unlike the KAM problem, perturbation
theory for almost-invariant tori is not inherently afflicted by small
denominators, at least when ι- is a low-order rational).
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As the two Fourier coefficients in Eq. (31) are the same,
θ1(ζ |Θ0) = Θ1(ι-p,qζ + Θ0, ζ ). However, Θ1 is not used in the
calculation of θ1: to first order, ghost and uncorrected QFMin pseudo-
orbits are identical, which, combined with the vanishing of μ1, is
consistent with the near indistinguishability of these two almost-
invariant surfaces in Fig. 2.

At O (ε2) we find

θ
(2)
m,n = δ̄mp,nq

∑
m′,n′

′ im′(m + m′)2 Vm+m′,n+n′ V ∗
m′,n′

(mι-p,q − n)2(m′ι-p,q − n′)2

+ ν1(Θ0)
imΘ

(1)
m,n

(mι-p,q − n)2
, (32)

where the prime on the sum over m′ and n′ indicates that the
resonant terms, m′ p = n′q, are to be deleted. The term containing
Θ(1) gives the O (ε2) difference between ghost pseudo-orbits and
uncorrected QFMin pseudo-orbits.

We also see from Eq. (26) that μ2 = −2ε2〈(∂θ1/∂Θ0)
2〉, where

〈·〉 denotes averaging over Θ0, so the correction factor μ in the
definition of ghost surfaces required for reconciliation does deviate
from unity by small amount, O (ε2). In the numerical work pre-
sented in Section 12 we take μ = 1.

11. Numerical construction of QFMin surfaces

Previously [8], periodic pseudo field lines were found by inte-
grating the Hamiltonian equations of motion Eqs. (16)–(17). The
constrained action principle instead allows periodic pseudo or-
bits to be found variationally. This is of great benefit for strongly
chaotic fields, as a defining characteristic of chaos is the expo-
nential separation of initially nearby trajectories at a rate given
by the Lyapunov exponent. Consequently, the intrinsic numerical
error associated with field-line-following methods is guaranteed
to increase as the trajectory becomes longer. The method of La-
grangian integration, also called variational integration [11], avoids
these problems. A Galerkin expansion of the trial curve,

θ = ι-p,qζ +
N−1∑
i=0

aiui(ζ ), (33)

in, say, N continuous, 2πq-periodic basis functions ui , is inserted
into the action principle and the unknown amplitudes ai are var-
ied,

δθ =
N−1∑
i=0

δaiui(ζ ), (34)

giving, from Eq. (19),

δSν =
N−1∑
i=0

〈
ui,

δSν

δθ

〉
ai

+ 1

2

N−1∑
i=0

N−1∑
j=0

ai

〈
ui,

δ2Sν

δθ δθ
u j

〉
a j + · · · , (35)

where the inner product 〈 f , g〉, f (ζ ) and g(ζ ) arbitrary, is defined
by

〈 f , g〉 =
2πq∫
0

dζ f g. (36)

Extremizing curves are then obtained, for example, by finding
a zero of the N-dimensional gradient 〈δSν/δθ, ui〉 using Newton’s

method. This approach allows very high order periodic orbits to be
found, even for quite strongly chaotic fields [12].

For numerical work, we must describe θ(ζ ) with a finite set of
parameters. It is simplest to use a piecewise linear description, i.e.
a finite-element expansion of θ(ζ ) in tent functions:

ui(ζ ) ≡ 1

�ζ

[
H(ζ − ζi−1)H(ζi − ζ )(ζ − ζi−1)

+ H(ζ − ζi)H(ζi+1 − ζ )(ζi+1 − ζ )
]
, (37)

where H(·) is the Heaviside step function, ζ is to be evalu-
ated mod 2πq to enforce periodicity [thus splitting the sup-
port of u0 ≡ uN between (0, ζ1) and (ζN−1, ζN )], ζi ≡ i�ζ , and
�ζ ≡ 2πq/N . At first, the piecewise-linear approximation seems
crude, but the great benefit is that the action integral can be
calculated analytically in each interval [12]. The discretized pseu-
doaction Sν becomes a rapidly computable function of the N in-
dependent parameters that describe the curve, {θ0, θ1, . . . , θN−1},
where θi ≡ (p/q)ζi + ai . Extremal curves are found as zeros of the
constrained action gradient, which are efficiently found using an
(N + 1)-dimensional Newton’s method. Note that the Hessian ma-
trix 〈ui, (δ

2Sν/δθδθ)u j〉 associated with the variations in the curve
geometry is a cyclic tridiagonal matrix.

12. Numerical construction of Lagrangian ghost surfaces

We discretize Eq. (48) using the Galerkin method. That is, we
substitute the ansatz Eq. (33) into Eq. (48) and project onto the
finite basis {ui},

N−1∑
i=0

〈ui, u j〉 Da j

Dτ
= −

〈
ui,

δS
δθ

〉
. (38)

For a basis with global support the matrix 〈ui, u j〉 is full and
it must be inverted numerically to get Da j/Dτ . For our finite-
element basis the matrix is tridiagonal,

〈ui, u j〉 = �ζ

[
δi, j + (�ζ)2

6

δi+1, j − 2δi, j + δi−1, j

(�ζ)2

]
, (39)

where the Kronecker δi, j is the identity matrix. The term (δi+1, j −
2δi, j +δi−1, j)/(�ζ)2 is a finite-difference approximation to d2/dζ 2,
so, assuming the action gradient is a smooth function, the second
term on the RHS is two orders in �ζ smaller than the first and so
can be neglected. Thus Eq. (38) can be solved analytically to give

Dai

Dτ
≡ Dθi

Dτ
= − 1

�ζ

〈
ui,

δS
δθ

〉
≡ − 1

�ζ

∂S
∂θi

. (40)

13. Conclusion

In this Letter we have given generalized definitions of quadratic-
flux-minimizing (QFMin) surfaces and ghost surfaces, formulating
them in terms of the magnetic field-line action. We have gone
further by introducing a new constrained Hamilton’s Principle for
QFMin pseudo-orbits that (a) facilitates a reconciliation between
QFMin surfaces and ghost surfaces, and (b) provides a better al-
gorithm than o.d.e. integration for calculation of QFMin orbits in
strongly chaotic regions.

QFMin and ghost orbits have been computed for a model mag-
netic field perturbed away from an integrable system described in
action-angle coordinates, and found almost, but not quite, to co-
incide. This is explained by finding a slight generalization of our
previous ghost surface definition that allows QFMin and ghost sur-
faces to be fully reconciled, in principle, the change in the ghost
surfaces being O (ε2). Using perturbation theory we find a choice
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of poloidal angle that unifies QFMin and ghost surfaces up to sec-
ond order in ε , with the difference between ghost surfaces and
uncorrected QFMin surfaces being O (ε2).

It remains for future work to implement this reconciliation at
all levels of nonlinearity and to explore whether it is beneficial to
use further generalizations of the ghost surface definition. Also re-
quiring further investigation is the question of why ghost surfaces
coincide so closely with temperature isosurfaces [4] for heat trans-
port in chaotic magnetic fields.

The innovations in this Letter should also be applicable in gen-
eral 1 1

2 -degree-of-freedom Hamiltonian systems and in the theory
of area-preserving maps.
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Appendix A. QFMin Euler–Lagrange equation

Here we rederive in canonical coordinates the Euler–Lagrange
equation for quadratic-flux-minimizing surfaces found by Dewar
et al. [1]. Consider a toroidal magnetic field in canonical form,
B = ∇ × (ψ∇θ − χ∇ζ ), with Jacobian 1/

√
g = ∇ψ · ∇θ × ∇ζ .

A toroidal surface is described by ψ = P (θ, ζ ). We define the tan-
gential dynamics using the equation θ̇ = Bθ /Bζ as a constraint, and
require the “radial” dynamics to be confined to the surface, so that
ψ̇ = Pθ θ̇ + Pζ , where Pα ≡ ∂α P , α ∈ {θ, ζ }. The angle parametriza-
tion is arbitrary, and so let Θ = Θ(θ, ζ ) be a new poloidal angle.
We define ν as the projection, ν ≡ B · N̄, of the magnetic field
onto the vector N̄ ≡ (eΘ + Pθ eψ) × (eζ + Pζ eψ) normal to Γ ,
where here (and only here) eΘ , eζ are the derivatives of position
with respect to Θ , ζ at constant ζ , Θ respectively: eΘ ≡ ∂x/∂Θ|ζ
and eζ ≡ ∂x/∂ζ |Θ . Combining these expressions, the tangential dy-
namics may then be written θ̇ = ∂χ/∂ψ and ψ̇ = −∂χ/∂θ − νΘθ ,
which may be recognized as the pseudo field, Eq. (9). The general-
ized quadratic-flux functional Eq. (2) can be written

ϕ2 = 1

2

∫ ∫
dθ dζ (B ·N)(B · N̄), (41)

where N ≡ (eθ + Pθ eψ) × (eζ + Pζ eψ), where eθ ≡ ∂x/∂θ |ζ , and
now eζ ≡ ∂x/∂ζ |θ . The first variation in this functional due to vari-
ations in the surface is

δϕ2 =
∫ ∫

dθ dζ δP
√

g
(

Bθ ∂θ + Bζ ∂ζ

)
ν, (42)

where we have used ∂(
√

g Bβ)/∂α|ψ=P = ∂ψ(
√

g Bβ)Pα +
∂α(

√
g Bβ), for α ∈ {θ, ζ } and β ∈ {θ, ζ }, to reflect the constraint

that when θ or ζ vary, ψ must also vary to remain on the surface.

Appendix B. Generalized ghost surfaces

In canonical coordinates Eq. (4) becomes, to O (δr),

δS =
2πq∫
0

dζ (δψeψ + δθeθ + δζeζ ) · δS
δr

=
2πq∫
0

dζ
[
(θ̇ − ∂ψχ) δψ − (ψ̇ + ∂θχ) δθ + χ̇ δζ

]
, (43)

where the second form follows directly from Eq. (14). Identifying
coefficients of δψ and δθ between the two forms,

δS
δr

= (θ̇ − ∂ψχ)eψ − (ψ̇ + ∂θχ)eθ + χ̇eζ . (44)

A slightly generalized definition of the Lagrangian definition [2] of
ghost surfaces can be found by choosing the projection operator in
Eq. (7) to be

Pghost = 1

ε
eψ eψ + 1

μ
eθ eθ , (45)

where ε → 0 is a switching factor required to obtain the La-
grangian description, as described below, and μ(ζ) = O (1) is a
factor we shall find necessary for unifying ghost and QFMin sur-
faces. Using Eq. (45) in Eq. (7), the generalized action-gradient flow
defining ghost surfaces in canonical coordinates becomes

Dψ

Dτ
= − θ̇ − ∂ψχ

ε
,

Dθ

Dτ
= ψ̇ + ∂θχ

μ
. (46)

Next we take the ε → 0 asymptotic limit, giving rise to two τ -
scales. On the short τ -scale ψ adjusts exponentially fast to enforce

θ̇ = ∂ψχ (47)

on the long τ -scale.
The action-gradient flow on the long τ -scale defining ghost sur-

faces in Lagrangian form is thus

Dθ

Dτ
= − 1

μ(ζ)

δS
δθ

, (48)

where δS/δθ = −ψ̇ − ∂θχ ≡ ∂L/∂θ − (d/dζ )(∂L/∂θ̇), with L ≡
ψθ̇ − χ and ψ constrained to be a function of θ̇ , θ , and ζ by
Eq. (47).
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