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The vanishing of the divergence of the total stress tensor (magnetic plus kinetic) in a neighborhood of
an equilibrium plasma containing a toroidal surface of discontinuity gives boundary and jump conditions
that strongly constrain allowable continuations of the magnetic field across the surface. The boundary
conditions allow the magnetic fields on either side of the discontinuity surface to be described by surface
magnetic potentials, reducing the continuation problem to that of solving a Hamilton–Jacobi equation.
The characteristics of this equation obey Hamiltonian equations of motion, and a necessary condition for
the existence of a continued field across a general toroidal surface is that there exist invariant tori in the
phase space of this Hamiltonian system. It is argued from the Birkhoff theorem that existence of such
an invariant torus is also, in general, sufficient for continuation to be possible. An important corollary
is that the rotational transform of the continued field on a surface of discontinuity must, generically, be
irrational.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

This Letter is concerned with plasma confinement in nonax-
isymmetric toroidal magnetic fields, such as occur in fusion exper-
iments. As is typical in plasma equilibrium theory we assume the
plasma to be static (i.e. mass flow is negligible) and the ion and
electron Larmor radii to be negligible. There is no minimum scale
length in this model and discontinuities are in principle possible,
provided the net force density at each point r in the plasma van-
ishes (the force balance condition). Also, a corollary of the assumed
flowless state is that electric fields are also negligible.

We assume the kinetic stress is described by the isotropic pres-
sure tensor P (r)I, where I is the unit dyadic. Adding the electro-
magnetic stress, the total stress tensor is

T ≡ P I + B2

2
I − BB, (1)

where B ≡ BSI(r)/
√

μ0, BSI being the magnetic field in SI units and
μ0 the permeability of free space. The force balance condition is
then [1]

∇ · T = 0. (2)
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If P and B are differentiable, Eq. (2) may be written in the more
usual form ∇P = (∇ × B) × B; but at surfaces of discontinuity P
and B are step functions and ∇ × B contains a Dirac delta function
component, corresponding to a sheet current at the discontinuity.
Then (∇ × B) × B is not well defined and it is better to regard
Eq. (2), interpreted in the weak sense of distribution theory, as the
fundamental form of the force balance relation.

Magnetic field lines can be regarded as trajectories of a 1 1
2

degree-of-freedom Hamiltonian dynamical system, e.g. [2], with
the toroidal angle ζ taken to be the analog of time and the
half degree of freedom implying the system is not, in general,
autonomous—the Hamiltonian depends explicitly on ζ . An impor-
tant exceptional case is that of axisymmetry, as in an ideal toka-
mak, in which case the field-line Hamiltonian is integrable and all
field lines lie on invariant tori foliating the plasma volume. It is
then consistent with Eq. (2) to assume P and B to be arbitrarily
smooth functions, with the isosurfaces of P coinciding with the
invariant tori.

In the theory of magnetically confinement plasmas these in-
variant tori are called magnetic surfaces, and each is characterized
by a field-line winding number called the rotational transform and
denoted ι-, being the asymptotic limit of the number of poloidal
transits divided by the number of toroidal transits as the length of
a field-line segment is taken to infinity.

However, in stellarators and real tokamaks axisymmetry is (to
a greater or lesser extent) broken and the magnetic field is nonin-
tegrable. Then, while magnetic surfaces of sufficiently irrational ι-,
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may exist [by the Kolmogorov–Arnold–Moser (KAM) theorem for
small departures from axisymmetry, or by good design in systems
far from axisymmetry], the intervening magnetic surfaces are bro-
ken and replaced by a fractal structure of island chains, which
include periodic orbits and chaotic regions.

In this case the problem of finding P and B globally consistent
with Eq. (2) is notoriously difficult [3], and it is an open ques-
tion as to whether solutions with globally continuous but noncon-
stant P exist. (In the linear force-free case of constant P through-
out the plasma, when B obeys the Beltrami equation, ∇ × B = μB,
with μ = const, solutions are known to exist under appropriate
boundary conditions [4,5], irrespective of the integrability of B.)
However, by appeal to KAM theory it has been shown [6] that
discontinuous solutions with piecewise constant P exist for small
departures from axisymmetry, and recent work [7,8] holds out
promise that variational methods can be used to construct numer-
ical solutions with a stepped pressure profile for systems far from
axisymmetry.

In the present Letter we consider a simpler, more local problem:
Consider a prescribed torus S and assume P and B differentiable in
open regions bounded by S , with P constant on each side of S but
discontinuous across it. Then, given the field B(r) on one side of S
and ι- on the other side, find the field B(r) on the other side that is
consistent with force balance in the weak sense discussed above.

In Section 2 we show that the surface magnetic fields must be
derivable from potential functions defined on either side of the
surface, so that the prescribed B can be obtained by specifying a
scalar function. The unknown surface potential on the other side
can be determined by solving a Hamilton–Jacobi equation involv-
ing a Hamiltonian, the pressure jump Hamiltonian. The configuration
space on which this Hamiltonian is defined corresponds to a single
flux surface, while the “momenta” correspond to possible magnetic
fields on the same surface. Thus the pressure jump Hamiltonian is
quite distinct from the magnetic field line Hamiltonian described
above, which is defined globally. (These Hamiltonians are com-
pared and contrasted in Appendix B. The only relevance of the
magnetic field line Hamiltonian to the problem posed in this Letter
is that S must be an invariant torus of the field line Hamiltonian
dynamics.)

The first Letter to use a Hamilton–Jacobi formulation in this
context and the first to investigate the suitability of using Hamilto-
nian existence criteria (for example, the KAM theory) to infer the
existence of field lines in this problem was by Berk et al. [9]. By
assuming the pressure jump interface S to be located on a mag-
netic surface that is somehow known to be an invariant torus of
a non-integrable vacuum magnetic field, and taking the pressure
jump to be the perturbation parameter, they were then able to in-
voke the KAM theorem without having to assume the system to
be close to axisymmetric. However, this was at the expense of the
very restrictive assumption that the field inside S was, to within a
constant factor, the unperturbed vacuum field.

A few papers followed Ref. [9], offering different formulations
in order to better understand the problem. For instance, Kaiser
and Salat [10] proved the existence of flux surfaces using only
geometrical arguments, but the approach again used restrictive as-
sumptions on the magnetic field, namely that it vanishes on the
inside of the interface S , and is a vacuum field on the outside.
By contrast our formulation generalizes the problem by allowing
nonzero current and nonzero magnetic field on both sides of S .

Kaiser and Salat [10] preferred their geodesic approach to the
Hamilton–Jacobi method because it allowed them to draw on the
established, rigorous mathematical literature and avoid applying
the KAM theorem to the pressure jump Hamiltonian system. In the
critique of the Hamilton–Jacobi method in their Appendix A, they
raise in particular the concern that points on an invariant torus
embedded in the phase space of the pressure jump Hamiltonian
may not map one-to-one to the configuration space of the torus,
violating the condition that field lines cannot cross.

In Section 3 we counter this criticism of the Hamilton–Jacobi
method by applying the Birkhoff theorem to prove the existence
of a mapping that takes characteristics on invariant tori in the
phase space of the pressure jump Hamiltonian to the magnetic
field lines in configuration space, such that the topology of those
characteristics is preserved. We then briefly discuss conditions and
methods for finding such invariant tori, avoiding appeal to KAM
theory by instead suggesting the use of non-perturbative methods
(e.g. Greene’s residue method) for investigating existence of invari-
ant tori in the pressure jump Hamiltonian phase space, any loss of
rigor being more than balanced by wider applicability. (Such meth-
ods were already invoked in Ref. [9] as a rationale for assuming the
existence of an invariant torus of the unperturbed vacuum field.)

One might be tempted to infer from this, and the fact that in-
variant tori in nonintegrable Hamiltonian systems generically have
irrational winding numbers, that ι must be irrational on both sides
of S . However, in the plasma equilibrium problem, the field line
dynamics is not known a priori but rather to be found by solving
for B self-consistently, with a boundary condition being that B be
tangential on the two sides of S . Thus, it could be said that S is an
invariant torus of the field line dynamics by construction. It is one
of the main aims of the present Letter to show that force balance
across S provides an independent, locally self-consistent reason for
believing that ι must be irrational on both sides of S in almost all
nonaxisymmetric equilibria.

2. Formulation

2.1. Physical derivation

We are interested in weak solutions of the coupled pair of
equations, Eq. (2) and the divergence-free magnetic field condition,

∇ · B = 0, (3)

in the neighborhood of a given surface of discontinuity.
Much can be inferred from Eq. (2); the details are in Appen-

dix A but here we report the important results. When there is a
discontinuity in the pressure across a surface S , and when the
magnetic field is force free in the neighborhood of the surface, the
following must apply on S ,

P = const, (4a)

B · n = 0, (4b)

(∇ × B) · n = 0, (4c)�
1

2
B2 + P

�
= 0. (4d)

In Eqs. (4), n is the normal to the surface, and the notation [[x]]
refers to the difference between x on one side of the surface and
x on the other side. Eqs. (4a)–(4c) must hold on both sides of
the surface [with a different constant on either side in the case
of Eq. (4a)]. We refer to Eqs. (4) collectively as the pressure jump
conditions. Note the tangential component of the magnetic field is
discontinuous.

To describe toroidal fusion geometries we now consider the sur-
face S to have a toroidal topology and use the coordinate system
(θ, ζ ). Here, θ and ζ are angle-like coordinates in the poloidal and
toroidal directions respectively.

The field on the inner side (side closest to the magnetic axis)
of S is given by B− , and the field on the outer side is given by B+ ,
as shown in Fig. 1. Eq. (4d) then becomes

B+2 − B−2 = 2(P− − P+). (5)
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Fig. 1. (Color online.) A toroidal cut showing the cross section of the plasma and
the various definitions. The cross section is a circle for simplicity, but the theory
will work for a surface S of any shape.

When Eq. (5) is written in terms of the covariant components
of the magnetic fields, one finds that

2�P =
∑

i, j∈{θ,ζ }
gij[B+

i B+
j − B−

i B−
j

]
, (6)

where �P = P− − P+ and gij = gij(θ, ζ ) are the contravariant
metric coefficients defined on the 2-dimensional Riemannian man-
ifold S , related to the covariant coefficients [6] by inverting the
2 × 2 matrix [gij],
gθθ = gζζ /

√
g, gθζ = −gθζ /

√
g, gζζ = gθθ /

√
g, (7)

where
√

g = gθθ gζ ζ − g2
θζ is the determinant. We shall also need

the 2-dimensional contravariant components of the surface mag-
netic field, defined by

Bθ = gθθ Bθ + gθζ Bζ , (8a)

Bζ = gθζ Bθ + gζζ Bζ . (8b)

The torus S is embedded in an ambient, 3-dimensional Eu-
clidean space with its own metric, Gij say. If (θ, ζ,ψ) are curvi-
linear coordinates in this ambient space such that ψ = const on S ,
then the covariant components Gij , i, j ∈ {θ, ζ }, are identical to gij
on S , but the contravariant components are different,

gij = Gij − Gψ i Gψ j

Gψψ
for i, j ∈ {θ, ζ }. (9)

2.2. Hamiltonian treatment

The keys to the Hamiltonian treatment are Eqs. (4b) and (4c),
together they imply that on S ,

∂θ B±
ζ − ∂ζ B±

θ = 0. (10)

Eq. (10) is implicitly satisfied if the field components are written
as

B±
θ = ∂θ f ±, B±

ζ = ∂ζ f ±, (11)

where the two scalar functions f ±(θ, ζ ) = ∫
B± · dl are referred

to as surface potentials. The surface potentials f − and f + define
fully the fields on the inner and outer sides of S (B− and B+)
respectively

Now with Eqs. (4b) and (4c) being implicitly satisfied, the pres-
sure jump conditions reduce to the single condition, Eq. (4d).

To this end we substitute Eq. (11) into Eq. (6) to give

2�P =
∑

i, j∈{θ,ζ }
gij[∂θ f +∂ζ f + − ∂θ f −∂ζ f −]

. (12)

The goal is, given a surface (which defines gij) and a field on one
side of the surface (which defines, say f −) the goal is to find
the potential on the other side of the surface ( f +) (see Fig. 2).
If f + can be found that has continuous second partial derivatives
Fig. 2. (Color online.) A depiction of a toroidal segment of the surface S to demon-
strate the properties required for the Hamiltonian.

[ f + ∈ C2(P+)], the magnetic field will satisfy force balance and lie
on the surface, satisfying Eqs. (4).

The problem is symmetric, we can either, given f − find f +
(work inside–out), or given f + find f − (work outside–in). So we
refer to the unknown surface field potential simply as f . Then the
pressure jump condition becomes a problem of calculating f from
the equation

H(θ, ζ, ∂θ f , ∂ζ f ) = �P . (13)

Eq. (13) is a partial differential equation for f . More specifically,
Eq. (13) is a time independent Hamilton–Jacobi equation with
∂i f = pi and Hamiltonian

H(θ, ζ, pθ , pζ ) = gij pi p j + V (θ, ζ ), (14)

where there is an implicit sum of i, j ∈ {θ, ζ }, and V (θ, ζ ) =
gij∂i f −∂ j f − where f − has been arbitrarily chosen as the given
potential. The Hamiltonian in Eq. (14) we refer to as the pressure
jump Hamiltonian.

The solution to this autonomous Hamiltonian system can be
found by solving the corresponding characteristic equations [11]

θ̇ = ∂ H

∂ pθ

, (15a)

ṗθ = −∂ H

∂θ
, (15b)

ζ̇ = ∂ H

∂ pζ

, (15c)

ṗζ = −∂ H

∂ζ
. (15d)

As a Hamiltonian system, �P is identified with the energy and
f is a type two generating function (Hamilton’s characteristic func-
tion) considered to generate the canonical pairs (θ, pθ ) and (ζ, pζ )

through

pθ = ∂θ f = Bθ , pζ = ∂ζ f = Bζ . (16)

If f exists, then the Hamiltonian orbit lies on an invariant torus
in phase space. Such an orbit we refer to as regular.

Other important Hamiltonian quantities and their correspond-
ing physical parameters in the pressure jump problem are listed in
Table 1.

Treating the problem as Hamiltonian, one is able to utilize
tools that have been developed for determination of integrability
in Hamiltonian systems to investigate whether a solution ( f ) can
be found that satisfies force balance. The intent of this Letter is to
provide a consistent explanation to prove that inferences from the
Hamiltonian system are acceptable.

Determination of the existence of a surface potential is suffi-
cient in the sense that it dictates definite existence criteria for
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the data supplied–surface shape, rotational transform, prescribed
magnetic field on one side and pressure. However, on the scale of
the entire plasma system it is only a necessary condition in that
many other sources of destruction may be present throughout the
plasma. These perturbations are generated outside the domain of
the pressure jump Hamiltonian as it is only defined within an in-
finitesimal region of the surface.

2.3. Reduction to a 1 1
2 DOF system

To simplify computation of Hamiltonian orbits, we condense
these equations by dividing Eqs. (15) by Eq. (15c) to trivialize the
third of Hamilton’s equations and make the toroidal angle-like co-
ordinate the “time” variable. The division requires that ζ̇ �= 0, the
implications of this being addressed in Section 3.1.

The reduced equations provide more physically relevant equa-
tions of motion. The first describes the path of the Hamiltonian
trajectory through configuration space:

dθ

dζ
= gθθ pθ + gθζ pζ

gθζ pθ + gζζ pζ

= Bθ

Bζ
, (17)

where Eqs. (8) have been utilized. Eq. (17) is the equation of a field
line. Any solutions to this characteristic equation of the pressure
jump Hamiltonian may correspond to field lines of the magnetic
field on S .

The second equation of motion is

dpi

dζ
= ∂i gi j pi p j − ∂i V

gθζ pθ + gζζ pζ

(pi = Bi), (18)

for i ∈ {θ, ζ }. Eq. (18) shows that the canonical momentum gives
the covariant components of the magnetic field along a Hamilto-
nian trajectory for solutions with the required rotational transform.

The final equation of motion, Eq. (15d), can be solved implicitly
by the first two using the fact that the energy of this Hamiltonian
system is conserved, the pressure jump being constant along the
flux surface by Eq. (37). This means pζ can be written as a func-
tion pζ = pζ (θ, pθ , ζ ;�P ). When this is substituted into Eqs. (15a)
and (15b), the entire system can be solved within two differential
equations. However, inversion of the Hamiltonian brings about an
arbitrary sign, which for simplicity, we choose to be positive, dis-
cussing the choice further in Section 3.1.

The system is now condensed into the differential system

dθ

dζ
= u(θ, ζ, pθ ;�P ), (19a)

dpθ

dζ
= v(θ, ζ, pθ ;�P ). (19b)

One method of identifying the existence of f is to calculate the
Hamiltonian trajectories. If a solution to this 1 1

2 degree of freedom
system can be found that lies on an invariant torus in (θ, pθ , ζ )

space with the correct winding number, the trajectory, when pro-
jected onto the 3D geometric torus, coincides with the field lines
that lie on that surface.

The solution of the pressure jump Hamiltonian is in general not
unique. It may be that many Hamiltonian trajectories are regular,
and so are physical candidates for a field to satisfy force balance.
To make the solution unique one can require the corresponding
field line have a certain rotational transform, defined as

lim
�ζ→∞

�θ

�ζ
= ι-. (20)

The pressure jump conditions, Eqs. (4), allow a jump in ι- across S ,
although there is some evidence to suggest that a jump in rota-
tional transform is unstable [12].
Given the non-intersection of phase-space characteristics for a
well-defined Hamiltonian system [13] and the fact that the phase-
space characteristics are confined to a topological torus, it is un-
derstood that the rotational transform embodies a topological in-
variant of the phase-space characteristic itself. In Section 3.2, the
existence of a map between phase-space characteristics and the
magnetic field lines in configuration space that preserves char-
acteristic topology will be shown. It is clear that since this map
preserves characteristic topology, it also preserves the rotational
transform.

2.4. Action angle coordinates

In action angle coordinates the canonical momenta are con-
stant, so that the equations of motion are trivial. The equations
of motion are, after an appropriate choice of initial conditions,

Θ = wΘt, Φ = wΦt, (21)

where wΘ and wΦ are constant. Thus,

Θ = wΘ

wΦ

Φ. (22)

This coordinate system is, in fusion research, known as straight
field line coordinates, as the magnetic field appears as a straight
line in these coordinates. Such coordinates are helpful because the
rotational transform, usually a quantity that requires integration
along the entire length of a field line (often infinitely long) is now
explicit in the equations of motion:

lim
�ζ→∞

�θ

�ζ
= dΘ

dΦ
= wΘ

wΦ

= ι-. (23)

Such coordinates can be found when f (which is the generating
function. cf. Eq. (16)) is separable in the configuration coordinates,
in this case the corresponding Hamiltonian trajectory lies on an
invariant torus [14].

The most general form for f given its definition in Eq. (11) is

f = Iθ + Gζ + f̂ (θ, ζ ), (24)

where I and G are constants, and f̂ (θ, ζ ) is a function periodic
in θ and ζ . The transformation to straight field line coordinates
can be accomplished via the transformation

θ = Θ − f̂ (θ, ζ )

I
, (25a)

ζ = Φ. (25b)

In the new coordinates,

f = IΘ + GΦ, (26)

and thus the magnetic field components are constant.

3. Analytical concerns

3.1. Ambiguity of sign

The pressure jump Hamiltonian is a constraint on the square
of the magnetic field, so it is expected that there are two mag-
netic fields that would satisfy force balance. This arbitrariness is
made explicit when one inverts the Hamiltonian to find pζ =
pζ (θ, pθ , ζ ;�P ) in an effort to reduce the phase space. When
completing the square one has the expression

gθζ pθ + gζζ pζ = ±�, (27)

where � = (gζ ζ (2�P + V (θ, ζ )− gθθ p2
θ )+ gθζ p2

θ )
1/2. The left-hand

side of Eq. (27) is the result of Eq. (15c), i.e.
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Table 1
A table summarizing the physical interpretations of Hamiltonian quantities in the problem.

Physical quantities and their Hamiltonian equivalents

�P Pressure jump E Energy
f Surface potential S Action/Hamilton’s principal function
(θ, ζ ) Curvilinear coordinates q Generalized coordinates
(Bθ , Bζ ) Covariant components of magnetic field p Generalized momenta
(Θ,Φ) Straight field line coordinates Q (Action) Angle coordinates
ι- Rotational transform w Winding number (angular frequency)
dζ

dt
= Bζ = ±�, (28)

showing that the two solutions correspond to magnetic fields with
opposite toroidal direction.

The information on the toroidal direction of the given field is
similarly lost within the pressure jump Hamiltonian so the choice
of sign must be made to reflect the initial conditions. It is expected
that physical configurations would require a field to be in the same
toroidal direction on either side of an infinitely thin flux surface,
otherwise there would be a very strong current sheet, susceptible
to a tearing instability [15].

The choice of sign has also been shown in Bruno and Laurence
to be equivalent to choosing the sign of the rate of change of
toroidal flux [6].

When reducing the phase space of the Hamiltonian system,
Hamilton’s equations were divided by ζ̇ , thus the condition in
which ζ̇ = 0 was necessarily lost. A field line that does not extend
toroidally corresponds to a field configuration of infinite rotational
transform–a situation we ignore as it will not ergodically cover the
surface, and thus will never act as a flux surface.

3.2. Birkhoff theorem

Kaiser and Salat [10] solve the pressure jump discontinuity
problem purely in configuration space, that is, a solution to force
balance on the surface is sought that corresponds directly to
geodesics covering a 3D torus. Such an approach is limited to situ-
ations where the field within the plasma volume is zero. However,
Kaiser and Salat felt obliged to use this geodesic method because
of concerns regarding the physical significance of Hamiltonian tra-
jectories in phase space.

Kaiser and Salat’s gravamen against the Hamiltonian formula-
tion can be stated as the following: Suppose a solution to the
pressure jump Hamiltonian system is found. This will correspond
to a Hamiltonian orbit that lies in a four-dimensional phase space.
The actual field line however exists on the two-dimensional torus
embedded in Euclidean 3-space, i.e. configuration space. We must
project a four-dimensional phase space trajectory to the two-
dimensional configuration space–is it not possible that the pro-
jected trajectory intersects itself?

Assuming the magnetic field is nowhere zero, such intersections
would make it impossible to interpret the projection as a physical
field line.

However, we will now prove that such crossings cannot occur,
via a direct application of the Birkhoff theorem to Eqs. (19). It will
thus be demonstrated that the existence intrinsic to the Hamilto-
nian formulation is sufficient to imply that the corresponding field
line is consistent with Eqs. (4).

Our system is a 1 1
2 degree of freedom Hamiltonian whose tra-

jectories define a 2D area preserving map by integrating Eqs. (19).
The mappings of interest, those generated by a trajectory that lies
on an invariant surface, are also twist maps as the metric is posi-
tive definite [det(∂pi ∂p j H) > 0] [16].

Consider the phase space variables (q, p) in a 2-dimensional
area preserving twist map, the Birkhoff theorem states that, for a
rotational invariant circle, [17]
p = Y (q), (29)

where Y is a Lipschitz function on R
2, i.e. Y satisfies

sup
x,y∈R2

|Y (x) − Y (y)|
|x − y| < C, (30)

for some bounded constant C . In this case we can write the phase
space mapping generated by the Hamiltonian as
(
q′, p′) = T

(
q, Y (q)

)
. (31)

Let us consider the operator π that is the projection of the phase
space trajectory onto configuration space,

π(q, p) = q, (32)

then

q′ = π
(
T
[
q, Y (q)

]) = α(q). (33)

Thus, as T is a homeomorphism and Y Lipschitz, α is also a home-
omorphism [17]. The injective nature of a homeomorphism implies
there will be no crossings under the mapping π .

Strictly, this is only true for a two-dimensional system because
the Birkhoff theorem applies only for a 2D phase space. Some lim-
ited higher-dimensional results have been found [18].

This means a homeomorphic mapping like Eq. (29) can be gen-
erated to define completely the evolution of the system, and the
above proof applies. Thus, when mapping the Hamiltonian tra-
jectories to the 2D torus in configuration space no crossings are
possible.

3.3. Existence of invariant tori

With the acceptance that solutions garnered from the pressure
jump Hamiltonian map homeomorphically to field lines on the 3D
toroidal surface, we can use the existence of the surface potential
to declare that the corresponding field line satisfies Eqs. (4).

When a Hamiltonian trajectory can be transformed to action
angle coordinates, the Hamiltonian orbit lies on an invariant torus;
and after the mapping to configuration space the field line will lie
on the surface and not intersect itself. Conversely, if the conditions
are such that the Hamiltonian trajectory is chaotic, it does not lie
on an invariant torus; after the mapping the field line will not lie
on the given flux surface (B · n = 0 is not satisfied) and no physi-
cally consistent field can exist.

Of great interest then, is the knowledge of whether an invariant
torus of the Hamiltonian exists or not. There are various tools to
use. As previously mentioned, there have been investigations into
the suitability of using the KAM theory to prove the persistence
of flux surfaces under a small perturbation in the Hamiltonian [9,
10]. In the pressure jump Hamiltonian, it is not clear in advance
whether a given trajectory is an invariant surface, and so the ques-
tion of its persistence under perturbations is not helpful.

Practically, especially in fusion devices, the surface would be
strongly perturbed and it would not be clear if the flux surface
with a given rotational transform would exist. Thus existence must
be determined a posteriori, that is, after the field line has been
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found, determine then whether the field line lies on an invari-
ant surface. The most commonly used tool to accomplish this
is Green’s residue criterion [19]. Despite only partial mathemati-
cal justification, [20] has proved helpful in investigations of this
kind [21–23].

A more computationally expensive but perhaps more physi-
cally relevant method would be the calculation of the analyticity
width [24,20]. Technically, it represents the domain of analyticity
of the transformation to action-angle coordinates in Eqs. (25).

There has been some progress in non-Hamiltonian approaches
to investigate existence in problems like the pressure jump Hamil-
tonian. Kaiser and Salat computationally found evidence for KAM-
like behavior in their purely configurational treatment. They devel-
oped their own purely configurational theorem to determine the
extent of deformation such that no two field lines can lie on the
torus and not intersect, which they termed the “big bump” crite-
rion [10].

4. Conclusion

By applying force balance to neighboring regions of plasma of
finitely different pressure separated by a infinitesimally thin flux
surface, three general criteria were found that must be satisfied in
order for the surface to be a flux surface. The three criteria were
combined into one, referred to as the pressure jump criterion by
condition of the existence of a surface potential f , a scalar func-
tion defined on the surface that is related to the magnetic field.

A Hamiltonian–Jacobi construction of the pressure jump crite-
rion was introduced, and the surface potential was found to play
the role of the generating function important in Hamiltonian dy-
namics.

The main analytical problem that faced the treatment was
solved, namely the sufficiency of an existence criterion on f to
determine one-to-one that the corresponding field line satisfied
the pressure jump criterion. This was resolved by appealing to the
Birkhoff theorem when the Hamiltonian system is integrated to
form a two-dimensional area preserving map. The application of
the KAM theory to Hamiltonians of this type has been questioned
in other papers, so practical avenues of investigation other than
the KAM theorem were suggested.
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Appendix A. Pressure jump condition

Consider a surface S , defined as n = 0 where n is the distance
from S . For the purposes of deriving the pressure jump condi-
tion, the definitions of B± are extended radially so they are both
smooth everywhere (i.e. not by themselves discontinuous) and re-
main bounded in both volumes. The discontinuous pressure profile
P (r) and the corresponding discontinuous complete magnetic field
B(r) can then be expressed as

P = P−(r)h(−n) + P+(r)h(n), (34)

B = B−(r)h(−n) + B+(r)h(n), (35)
where h is the unit Heaviside step function, which causes the dis-
continuity in B, as both B± are themselves not discontinuous. Such
a form for P and B gives

∇ P± = j± × B±, (36)

where j± = ∇ × B± are the associated currents. Dotting Eq. (36)
with B± gives B± ·∇ P± = 0, which implies the pressure is constant
along a magnetic field line. As a flux surface is composed of a
single magnetic field line, we have the condition that on both sides
of the surface

P± = const. (37)

Substitution of Eq. (35) into ∇ · B = 0 gives

∇ · B = n · [[B]]δ(n) + ∇ · B−h(−n) + ∇ · B+h(n), (38)

where n is the unit normal to S and where [[x]] is the jump of
x across the interface, [[x]] = x+ − x− . The divergence can only be
zero if

[[Bn]] ≡ n · [[B]] = 0, (39)

i.e., the normal component of the magnetic field must be continu-
ous.

Similarly, when Eqs. (34)–(35) are substituted into the stress
tensor in Eq. (2),

n ·
�

I

(
P

1

2
B2

)
− BB

�
= 0. (40)

Substituting Eq. (39) into the above and dotting with n gives the
condition
�

P + 1

2
B2

�
= Bn[[Bn]] = 0, (41)

removing the middle equality gives the pressure jump condition.
As Bn is continuous, Eq. (41) can be written as

�
(n × B)2 � = −2[[P ]], (42)

so long as [[P ]] �= 0,

[[n × B]] �= 0. (43)

Crossing Eq. (40) with n gives

Bn[[n × B]] = 0. (44)

Combining Eq. (43) with Eq. (44) implies

n · B± = 0. (45)

Thus, if there is a pressure discontinuity across a surface, the field
lines must lie on that surface.

The plasma in the neighborhoods either side of the surface is
assumed to be force free, so that ∇ P = 0. Eq. (36) then implies
that j± is parallel to B± , which on comparison with Eq. (45) im-
plies

n · j± = n · (∇ × B±) = 0. (46)

Thus, if there is a pressure discontinuity across a surface, the curl
of the magnetic field must be parallel to the surface at all points
on the surface.
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Table 2
A table summarizing the differences between the magnetic field line Hamiltonian and the pressure jump Hamiltonian.

Magnetic field line Hamiltonian Pressure jump Hamiltonian

P implicit P explicit
Defined throughout plasma volume Defined on a given magnetic surface
Phase space and time a representation of Euclidean 3-space Phase space a combination of a Riemannian 2-space = magnetic surface (configuration space) and field

components (momentum space)
All orbits are field lines Orbits are not field lines, projections of regular orbits with specified ι- onto configuration space are field

lines
Appendix B. Comparison of Hamiltonians

In this section we compare the magnetic field line Hamiltonian
system often used in the literature to the pressure jump Hamilto-
nian system introduced in this Letter.

The magnetic field in the plasma volume be written as [25]

B = ∇ψ × ∇θ + ∇ζ × ∇χ. (47)

Using the equation of the field line dr/dt = B(r), one finds [2]

dθ

dζ
= ∂χ

∂ψ
, (48)

dψ

dζ
= −∂χ

∂θ
, (49)

which are of the form of Hamilton’s equations. Thus each field line
can be described as the solution of the magnetic field line Hamil-
tonian χ , in a phase space with the poloidal angle θ and toroidal
flux function ψ as canonical variables.

Trajectories of this Hamiltonian correspond directly to magnetic
field lines within the plasma. Trajectories that lie on invariant tori
correspond to field lines that draw out flux surfaces. Trajectories
that are chaotic correspond to chaotic field lines the compose the
chaotic regions of the plasma.

The pressure enters implicitly into the magnetic field line
Hamiltonian system, exciting currents that determine the flux
functions. The field line dynamics feeds back into the determi-
nation of the pressure as a function of position.

In contrast, the pressure is explicit in the pressure jump Hamil-
tonian, but it only holds on a given toroidal surface. While the
trajectories of this Hamiltonian system are not the field lines, the
projection of the phase trajectories onto the 3D torus are field lines
of the given rotational transform. If the surface potential can be
found, then the surface is a flux surface.

A summary of the differences of the Hamiltonian systems in
given in Table 2.
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