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Leveraging the recently developed multiregion, relaxed MHD (MRxMHD) theory, which bridges
the gap between Taylor’s relaxation theory and ideal MHD, we provide a thorough analytical and
numerical proof of the formation of singular currents at rational surfaces in non-axisymmetric
ideal MHD equilibria. These include the force-free singular current density represented by a Dirac
δ-function, which presumably prevents the formation of islands, and the Pfirsch-Schlüter 1/x singular
current, which arises as a result of finite pressure gradient. An analytical model based on linearized
MRxMHD is derived that can accurately (1) describe the formation of magnetic islands at resonant
rational surfaces, (2) retrieve the ideal MHD limit where magnetic islands are shielded, and (3)
compute the subsequent formation of singular currents. The analytical results are benchmarked
against numerical simulations carried out with a fully nonlinear implementation of MRxMHD.
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I. INTRODUCTION

Ideal MHD with nested flux surfaces predicts the
existence of singular current densities forming at rational
surfaces in three-dimensional equilibria [1–5]. These cur-
rent singularities consist of a Pfirsch-Schlüter component,
which arises as a result of finite pressure gradient, and
a δ-function current density, which presumably prevents
the formation of islands that would otherwise develop in
a non-ideal plasma. The singularities arise from requiring
the conservation of charge, ∇ · j = 0, which gives rise to
a magnetic differential equation for the parallel current,
namely B · ∇u = −∇ · j⊥, where j ≡ uB + j⊥. Magnetic
differential equations are densely singular [6]. Their sin-
gular nature is exposed as follows. First, straight-field-
line coordinates may be constructed on each flux surface,
giving

√
gB · ∇ = ι-∂θ + ∂ζ . Here

√
g is the Jacobian of

the coordinates, ι- is the rotational transform on a given
flux surface, and θ and ζ are the poloidal and toroidal
straight-field-line angles, respectively. Then, by using a
Fourier representation, u =

∑
mn umn exp [i(mθ − nζ)],

the magnetic differential equation implies

umn(x) = hmn(x)/x+ ∆mnδ(x) (1)

where x = ι-m − n, hmn = i(
√
g∇ · j⊥)mn, and ∆mn is

an arbitrary constant. The first term on the right-hand-
side of Eq. (1) is the Pfirsch-Schlüter component of the
parallel current and presents a 1/x singularity around
rational surfaces. Its magnitude is proportional to the
pressure gradient by virtue of the force-balance equation
j × B = ∇p, which gives j⊥ = B × ∇p/B2. The sec-
ond term on the right-hand-side of Eq. (1) is a parallel
δ-current density at the rational surfaces. Its magnitude,
∆mn, remains undetermined here.
Since rational numbers are dense in real space, the singu-
lar currents implied by Eq. (1) are expected to be densely
packed within the plasma volume, unless ι- is exactly con-
stant across flux surfaces and exactly irrational.

While analytical formulations have been developed to
describe such currents in simplified geometries [7, 8], and
the δ-currents have been computed using either ideal
MHD initial value codes [9] or linearized, perturbed ideal
equilibrium codes [10, 11], a numerical proof of their ex-
istence using nonlinear MHD equilibrium codes has been
hampered by the assumption of smooth functions made
in conventional MHD equilibrium models, such as VMEC
[12]. In particular, to our knowledge no numerical model
has been shown to compute the 1/x pressure-driven sin-
gular currents.

Recently, a theory based on a generalized energy
principle, referred to as multiregion, relaxed MHD
(MRxMHD), was developed and incorporates the pos-
sibility of non-smooth solutions to the MHD equilibrium
problem and bridges the gap between Taylor’s relaxation
theory and ideal MHD. In this paper, we develop an ana-
lytical model based on linearized MRxMHD theory, and
compare the predictions of this model to those of a fully
nonlinear numerical implementation of MRxMHD.

The linearized model can accurately (i) describe the
formation of magnetic islands at resonant rational sur-
faces, (ii) retrieve the ideal MHD limit in which mag-
netic islands are shielded, and (iii) compute the subse-
quent formation of both δ-currents and pressure-driven
1/x currents. The model is restricted to slab, linearly
perturbed equilibrium solutions. However, to our knowl-
edge this is the first model that can achieve points (i)-(iii)
at the same time.

We provide a numerical proof of the formation of singu-
lar currents in non-axisymmetric ideal MHD equilibria by
leveraging a fully nonlinear numerical implementation of
the MRxMHD model. For each numerical result, we per-
form careful convergence studies and analytical bench-
marks.

In Sec. II, we summarize the main elements of the
MRxMHD theory. The analytical model based on the
linearized MRxMHD theory is derived in Sec. III, show-
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ing that both magnetic islands and singular currents can
be captured by the same model. In Section IV, we use
a fully nonlinear implementation of the MRxMHD the-
ory to benchmark the linear results. A conclusion and
outlook follow in Sec. V.

II. MRXMHD THEORY

The classical MHD energy functional [13] is

W =
∫
Vp

( p

γ − 1
+
B2

2µ0

)
dV (2)

where Vp is the plasma volume and γ is the adiabatic in-
dex. Ideal MHD equilibria are found by extremizing W
subject to certain constraints. First, because the fluid is
assumed to be perfectly conducting the magnetic field is
frozen into the plasma and cannot change its topology.
For a given plasma displacement ξ, Faraday’s law and
ideal Ohm’s law restrict the possible variations of B to
the form δB = ∇× (ξ ×B). This is a continuous topo-
logical constraint that is equivalent to the conservation
of magnetic helicity [14, 15],

K =
∫
V

A ·B dV , (3)

for any volume V bound by field lines in the plasma.
Here A is the vector potential such that B = ∇ × A.
The magnetic helicity can be related to the Gauss link-
ing number and thus can be interpreted as a measure of
how intertwisted are field lines [16]. Second, the con-
tinuity equation, ∂tρ + ∇ · (ρv) = 0, and the equa-
tion of state, dt(p/ργ) = 0, constrain the possible vari-
ations of pressure. Here p is the plasma pressure, ρ is
the plasma density, v is the mean plasma velocity, and
dt = ∂t + v · ∇. These equations translate into the con-
straint δp = (γ−1)ξ ·∇p−γ∇·(pξ). The first variation of
Eq. (2) under these two constraints, assuming a plasma
displacement vanishing at the boundary, is

δW =
∫
Vp

(∇p− j×B) · ξ dV . (4)

Thus extremizing W under ideal constraints leads to the
force-balance equation j×B = ∇p. In order to uniquely
define an equilibrium, in addition to the shape of the
plasma boundary, it is required to specify two radial pro-
files [13], e.g. the pressure p(ψ) and the rotational trans-
form ι-(ψ) at each flux surface.

The MRxMHD theory was first proposed by Hole,
Hudson and Dewar [17, 18], and considers a wider class
of plasma equilibria by exploiting the ideas developed by
Bhattacharjee and Dewar [19] to generalize the Kruskal-
Kulsrud variational principle [13]. In MRxMHD, rather
than continuously constraining the topology, the topol-
ogy is discretely constrained, thus allowing for partial
relaxation. It thus bridges the gap between Taylor’s re-
laxation theory and ideal MHD in a very precise way [20].

Moreover, it allows for the possibility of non-smooth so-
lutions, which are ubiquitous to the three-dimensional
MHD problem.

The plasma is partitioned into a finite number NV of
nested volumes Vl, l = 1, 2, . . . , NV , that undergo Taylor
relaxation. These volumes are separated by ideal inter-
faces Il, l = 1, 2, . . . , NV − 1, that are assumed to be
magnetic flux surfaces. The energy local to each volume
is

Wl =
∫
Vl

( p

γ − 1
+
B2

2µ0

)
dV . (5)

In each volume Vl, variations are allowed in the pressure,
the magnetic field, and the geometry of the interfaces,
in order to extremize the local energy Wl. The class
of possible variations is defined by certain constraints,
which are the discrete equivalents of the continuous con-
straints imposed in ideal MHD. First, the magnetic field
on the interfaces must remain tangential, B·n = 0, which
means that the interfaces are good flux surfaces. Sec-
ond, the magnetic fluxes in each volume are conserved,
which is the discrete equivalent of providing the rota-
tional transform profile, as we shall see later. Third,
the magnetic helicity Kl is conserved in each volume Vl,
which is the discrete equivalent of the continuous con-
straint on the helicity in ideal MHD, and a generalization
of the single constraint on the global helicity in Taylor’s
theory. Fourth, the ideal-gas constraint applied to indi-
vidual fluid elements in ideal MHD is instead applied to
each entire relaxed volume, namely plV

γ
l = al, where al

is a constant and Vl is the volume of Vl. This last con-
straint is the discrete equivalent of specifying the pressure
or mass profile. In order to find MRxMHD equilibria, an
energy functional is constructed,

F =
∑
l

Fl =
∑
l

[
Wl −

µl
2

(Kl −Kl,0)
]
, (6)

where Wl is given by Eq. (5) and µl is a Lagrange multi-
plier introduced explicitly to enforce a constant helicity
Kl,0 in each volume Vl. The flux constraints and the
tangentiality condition on the interfaces can be enforced
implicitly by constraining the representation of the mag-
netic field or vector potential (see, e.g., Ref. [21] for a
more detailed discussion). The first variation of the local,
constrained energy functional Fl, is

δFl =
∫
Vl

(∇×B−µlB)·δA dV −
∫
∂Vl

(pl+
B2

2
)·ξ dV (7)

for arbitrary variations in the field, δB = ∇ × δA, and
in the internal interfaces geometry, ξ. Therefore, states
that extremize the MRxMHD energy functional F satisfy

∇×B = µlB in Vl (8)

[[p+B2/2]] = 0 in Il (9)

where [[·]] denotes the jump across an interface. Eq. (8)
is a Beltrami equation for the magnetic field and implies
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complete plasma relaxation in each volume Vl, thus al-
lowing magnetic islands and chaos to form. Equation (9)
represents a force-balance condition on the interfaces Il
and ensures the continuity of total pressure. Both the
plasma pressure and magnetic field can nevertheless be
discontinuous and therefore both stepped-pressure pro-
files and singular currents are possible in MRxMHD equi-
libria.

As a matter of fact, by virtue of Ampere’s law, asso-
ciated with a field discontinuity [[B]] there is a singular,
δ-current density, j, with magnitude [[B]]×n, where n is
the unit vector normal to the ideal interface.

As in ideal MHD, in addition to the shape of the
plasma boundary, certain quantities must be specified in
order to uniquely define an MRxMHD equilibrium. In-
stead of continuously prescribing the pressure profile as
a function of the toroidal flux, the pressure pl must be
prescribed in each volume Vl, together with the amount
of enclosed toroidal flux ∆Ψt,l in that volume. In ad-
dition, both the helicity Kl and the enclosed poloidal
flux ∆Ψp must be prescribed in each volume, except for
the innermost volume which has a single boundary in-
terface and only the helicity is required. Alternatively,
as we shall see later, instead of (Kl,∆Ψp) it is possible
to specify (µl,∆Ψp) or (ι-+l , ι-

−
l ), namely the rotational

transform on the interfaces bounding each volume. This
last possibility is clearly the discrete equivalent of spec-
ifying the rotational transform profile in ideal MHD. In
fact, there is a clear connection between Taylor’s relax-
ation theory, MRxMHD and ideal MHD. For NV = 1,
MRxMHD reduces to Taylor’s theory, while ideal MHD
is exactly retrieved for NV →∞ [20].

Finally, we would like to remark that a close exam-
ination of the force-balance condition, Eq. (9), reveals
that the existence of ideal interfaces in general three-
dimensional equilibria requires the rotational transform
on the interfaces to be strongly irrational [22]. This is
consistent with the Kolmogorov-Arnold-Moser (KAM)
theorem [23], which shows that for non-integrable Hamil-
tonian systems there exists a finite measure of invariant
tori provided that the rotational transform is sufficiently
irrational. However, this subtle point raises the ques-
tion of whether it is possible to describe the formation of
singular currents at rational surfaces within MRxMHD.
We expect that this should be possible by virtue of the
mathematical proof for the asymptotic convergence of
MRxMHD towards ideal MHD [20]. In the next two sec-
tions, we shall give a rigorous analytical and numerical
proof that this is indeed possible.

III. MODEL FOR ISLAND SHIELDING AND
SINGULAR CURRENT FORMATION

Magnetic islands and singular currents can exist even
in slab geometry [7]. In this paper, we consider this ge-
ometry as a minimum model to describe the shielding
of magnetic islands and the subsequent formation of sin-

gular currents. We first derive analytically MRxMHD
equilibrium states where a magnetic island is produced
by a small but resonant magnetic perturbation on the
boundary. Then, we look for the analytical limit in which
the island is shielded and compute the resulting singular
currents forming at the resonant rational surface.

We start by considering an MRxMHD equilibrium for
a single-volume, zero-pressure, plasma slab with torus
periodicity. We write the position r = x̂i + yĵ + zk̂ with
a general set of coordinates (s, θ, ζ), where θ, ζ ∈ [0, 2π]
and s ∈ [−1, 1], such that x = θ and y = ζ are the two
periodic coordinates and z = R(s, θ, ζ) is an interpola-
tion between the geometries of the two interfaces defin-
ing the boundary of the volume, namely R(±1, θ, ζ). In
the simplest case of an unperturbed boundary, we have
R(s, θ, ζ) = R0(1− s)/2 +R1(1 + s)/2, where R0 and R1

give the position of the two interfaces and are assumed
to be given.

The magnetic field in the relaxed volume satisfies
∇×B = µB with topological constraints B · ∇s = 0 at
the two interfaces, and the general solution in these co-
ordinates is simply B = (Bs, Bθ, Bζ) = (0, B0 sin (µ̄s) +
B̂0 cos (µ̄s), B0 cos (µ̄s) − B̂0 sin (µ̄s)) in the contravari-
ant basis. Here µ̄ = µ∆/2 with ∆ = R1 − R0, and
B0, B̂0 are two arbitrary constants. The equilibrium
state is thus uniquely determined by three constants,
namely (µ̄, B0, B̂0). Similarly to Ref. [15], these three
constants can be directly related to the enclosed toroidal
and poloidal fluxes, ∆Ψt = 2πB0∆ sin µ̄/µ̄ and ∆Ψp =
2πB̂0∆ sin µ̄/µ̄, and the volume helicity K = 2π2(B2

0 +
B̂2

0)∆2/µ̄ = (∆Ψ2
t + ∆Ψ2

p)µ̄/(2 sin2 µ̄), which is invari-
ant to single-valued gauge transformations. In Ref. [15],
however, the relaxed volume is a cylinder with one single
outer interface, and thus only two constants, ∆Ψt and K,
are required to determine the solution. The rotational
transform on the interfaces, ι-±, can also be related to
the three constants (µ̄, B0, B̂0), as ι-± = Bθ(±1)/Bζ(±1).
Therefore the equilibrium state can be obtained by pro-
viding different triplets of constants, e.g. (µ̄, B0, B̂0),
(∆Ψt,∆Ψp,K), or (∆Ψt, ι-+, ι-−).

With the purpose of building a simple equilibrium state
with a resonant rational surface, we choose ι-− = −ι-+,
which is equivalent to setting B̂0 = 0 or ∆Ψp = 0 [7]. In
doing so, we allow for the existence of a rational surface
ι- = 0, which is resonant to any toroidally symmetric per-
turbation (n = 0, m 6= 0). As a matter of fact, in the case
of an unperturbed boundary the magnetic field displays
good flux surfaces everywhere (Fig. 1), and the rotational
transform profile can be easily computed, ι-(s) = tan (µ̄s),
thus ι-(0) = 0.

We are now in the position to consider a resonant
perturbation at the boundaries and to calculate the
new equilibrium state which should display an island
around the resonant rational surface. The perturbed
boundaries are described through their surface geometry,
R(−1, θ, ζ) =

∑∞
m=0R0,m cos (mθ) and R(+1, θ, ζ) =∑∞

m=0R1,m cos (mθ), where only n = 0 perturbations
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are considered in order to select a single resonant ratio-
nal surface ι-res = n/m = 0. For the sake of simplicity (we
target the minimum model for the generation and shield-
ing of magnetic islands) we consider only the m = 0, 1
components.

This perturbation alters the metric elements and the
Jacobian, thus complicating the equation ∇ ×B = µB,
but a solution can be found analytically in the limit of
small perturbations: R0,1, R1,1 � ∆, where ∆ = R1,0 −
R0,0. In this limit, the general solution is of the form

B = Bu + (bs sin θ, bθ cos θ, bζ cos θ) (10)

where Bu is the unperturbed solution and bs(s), bθ(s),
and bζ(s) are to be found by inserting Eq. (10) into the
Beltrami equation. In doing so, we use the general re-
lation (∇×B) · eδ =

√
g−1∂αBβ ε

αβγgγδ , where εαβγ is
the Levi-Civita tensor and gγδ ≡ eγ · eδ = ∂γr · ∂δr is the
metric tensor, whose elements are computed by differen-
tiating the position vector with respect to the coordinates
(s, θ, ζ). The problem reduces to a second order, ordinary
differential equation for bζ(s),

b′′ζ + λbζ = G(s) , (11)

with boundary condition bζ(±1) = 0, which results from
B ·∇s = 0 at the two interfaces. Here λ = µ̄2−∆2/4 and
the function G(s) measures the external perturbation,
G(s) = µ̄∆2/4

[
ε0(1−s)+ε1(1+s)

]
Bθ,u−2µ̄2(ε1−ε0)Bζ,u,

where εl = Rl,1/∆ � 1. The solution of Eq. (11) de-
pends on the sign of λ and is given in Appendix A, to-
gether with the corresponding expressions for bs(s) and
bθ(s). In all cases, however, the equilibrium state is
now uniquely determined by a set of six constants, e.g.
(µ̄, B0, B̂0,∆, ε0, ε1). Provided that ε0 6= ε1, a Poincaré
plot of the magnetic field line trajectories reveals the ex-
istence of an island (Fig. 1). We remark that this single-
volume MRxMHD equilibrium state corresponds to the
fully-relaxed Taylor state. As before, we can relate the
enclosed toroidal flux, ∆Ψt, and the rotational transform
on the interfaces, ι-±, to the constants (µ̄, B0, B̂0). Inter-
estingly, the corresponding expressions are, to first or-
der in ε, the same as in the unperturbed system (see
Appendix B). Therefore the equilibrium state may be
determined by providing, e.g., (µ̄, B0, B̂0,∆, ε0, ε1) or
(∆Ψt, ι-+, ι-−,∆, ε0, ε1).

With the purpose of approaching the ideal MHD limit
in which the island is shielded by the topological con-
straints and a singular current appears at the resonant
rational surface, we now consider that the equilibrium
state we have constructed consists of multiple relaxed
volumes. In doing so, we can enforce NV − 1 ideal inter-
faces to exist inside the boundaries of the system, with
NV being the number of relaxed volumes. Theoretically,
in the limit NV →∞, we know that MRxMHD converges
to ideal MHD [20]. However, as we show now, in the zero-
pressure limit both island shielding and singular current
formation can be obtained with NV = 3. In fact, with
NV −1 = 2 internal interfaces, we can squeeze the island

FIG. 1: Poincaré plot of the magnetic field trajectories at
fixed ζ = 0, for a single-volume MRxMHD equilibrium state.
Left: R0,1 = R1,1 = 0. Right: R0,1 = −10−2, R1,1 = 10−2.
Results obtained from the analytical solution for B, with
∆Ψt = 1, ι-± = ±1.618, and ∆ = 1.

by bringing them arbitrarily close to the resonant ratio-
nal surface, thus retrieving the ideal MHD equilibrium
state with zero pressure.

We consider three volumes Vl, l = 1, 2, 3. In each
volume s ∈ [−1, 1], and θ, ζ ∈ [0, 2π]. The function
Rl(s, θ, ζ) is given at the interfaces by

Rl(s, θ) =

{
Rl,0 +Rl,1 cos θ if s = +1
Rl−1,0 +Rl−1,1 cos θ if s = −1

(12)

where (R0,0, R0,1, R3,0, R3,1) define the geometry of the
boundary interfaces and are assumed to be given. The
remaining constants (R1,0, R1,1, R2,0, R2,1) define the ge-
ometry of the internal interfaces and are unknown a pri-
ori. Their values are determined by the force-balance
condition, which is [[B2]] = 0 across each internal inter-
face. The solution for the magnetic field in each relaxed
volume Vl is given by Eq. (10) together with Eq. (A7),
and its dependence is as follows:

Bl = Bl(B0l, B̂0l, µ̄l,∆l, εl−1, εl) (13)

for l = 1, 2, 3, and where ∆l = Rl,0 − Rl−1,0, εl−1 =
Rl−1,1/∆l and εl = Rl,1/∆l. After providing the geom-
etry of the boundaries and the triplet (∆Ψt,l, ι-+l , ι-

−
l ) for

each volume Vl, the geometries of the internal interfaces
remain undetermined, and the self-consistent equilibrium
solution for Bl is found by enforcing the force-balance
condition, [[B2]] = 0, across each internal interface.
Keeping, as before, only first order terms in the geometri-
cal perturbation amplitudes, εl, the force-balance condi-
tion can be written as [[B2]]m=0 + [[B2]]m=1 cos θ = 0,
and since the two components must vanish indepen-
dently, this gives four constraints in total (two per inter-
face). More precisely, the m = 0 and m = 1 components
of the force-balance conditions at the two internal inter-
faces lead to two decoupled linear systems whose solu-
tions provide, respectively, expressions for (∆1,∆2) and
(R1,1, R2,1), thus uniquely determining Bl. A detailed
derivation is given in Appendix C. Figure 2 shows an
example of Poincaré plot for a three-volume MRxMHD
equilibrium state (with and without perturbation) com-
puted from the analytical solution for the magnetic field.
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We remark that the positions and geometries of the inter-
nal interfaces are not imposed. They are self-consistently
computed from the force-balance condition. However,
there is freedom in setting the outer boundary geome-
tries, the enclosed toroidal fluxes in each relaxed volume,
and the rotational transform on each interface.

The area that each volume Vl occupies in a Poincaré
section is proportional to the enclosed toroidal flux, given
that ∆Ψt,l = 2πB0l∆l sin µ̄l/µ̄l and that ∆l is the aver-
age separation between the two interfaces defining the
volume Vl. Therefore, a sequence of MRxMHD equi-
librium states in which the enclosed toroidal flux ∆Ψt,2

approaches zero and the rotational transform on the in-
ternal interfaces, ι-−2 and ι-+2 , approach the resonant value
ι-res = 0, should squeeze the island and make it vanish,
thus retrieving the ideal MHD limit. The vanishing of
the island should occur if the m = 1 components of the
internal interfaces deformation, R1,1 and R2,1, converge
to the same finite value when ∆Ψt,2, ι-±2 → 0. However,
as shown in Appendix C, the solution for the interfaces
deformation is R = M−1S and both det (M) and S go
to zero when ∆Ψt,2, ι-±2 → 0. Thus, in the same way that
limx,y→0 x/y is not defined unless the rate at which x and
y approach zero is specified, we need to specify the exact
way ι-±2 and ∆Ψt,2 approach zero. Consider then

ι-±2 = ±Xα (14)

∆Ψt,2 = Xβ (15)

where α, β > 0 and X → 0. The self-consistent solution
for the geometry of the internal interfaces is then

lim
X→0

∆1 = lim
X→0

∆3 = 1/2 , lim
X→0

∆2 = 0 , (16)

lim
X→0

R1,1 = lim
X→0

R2,1 =
κ

2
(R0,1 +R3,1) (17)

for β > α, and where κ ∈ [0, 1] depends on the magnitude
of the rotational transform on the external interfaces and
its exact expression is given in Appendix C. Equation
(17) implies that for β > α the magnetic island should
vanish. This result provides a precise way to shield the
island forming around the resonant rational surface and
thus to retrieve the ideal MHD limit in which singular
currents are expected to develop.

Figure 3 shows an example of a sequence of MRxMHD
equilibrium states with decreasing X and where α = 1
and β = 2.5 have been chosen. As expected, the island is
squeezed and the magnitudes of R1,1 and R2,1 converge
to the same value, as shown in Fig. 4. Notice that in both
Figs. 2 and 3 there is an m = 1, n = 0 island forming
around the resonant rational surface, but with a different
poloidal phase. This is simply due to the fact that the
signs of R1,1 and R2,1 are reversed.

We remark that for β < α, however, R1,1 and R2,1 con-
verge to different values (see Appendix C) and thus the
interfaces intersect each other, indicating that in this case
the assumed geometrical description of the interfaces is
not sufficient. This suggests that other MRxMHD equi-
librium solutions with non-trivial geometry may exist.

FIG. 2: Poincaré plot of the magnetic field trajectories
at fixed ζ = 0, for a three-volume MRxMHD equilibrium
state. Left: R0,1 = R3,1 = 0. Right: R0,1 = −10−2,
R3,1 = 10−2. Thick lines indicate the internal interfaces. Re-
sults obtained from the analytical solution for B, with fluxes
∆Ψt,1 = ∆Ψt,3 = 0.1695, ∆Ψt,2 = 0.6610, and rotational
transforms ι-−1 = −1.618, ι-+1 = ι-−2 = −0.679, ι-+2 = ι-−3 = 0.679,
and ι-+3 = 1.618. System size is ∆1 + ∆2 + ∆3 = 1.

FIG. 3: Sequence of MRxMHD equilibrium states with de-
creasing X ∈ [0.1, 0.6] with α = 1 and β = 2.5. Here the
boundary perturbations are R0,1 = 0 and R3,1 = 1×10−2. In
the bottom right panel equilibrium we have ∆2 = 2.61×10−3,
R1,1 = 4.97 × 10−3 and R2,1 = 4.55 × 10−3, therefore
|R2,1 −R1,1|/∆2 ≈ 0.1 < 1 ensures no crossing.

As a matter of fact, plasmoid solutions to the same equi-
librium problem have been constructed in a recent pub-
lication [24]. Despite this apparent non-uniqueness of
solutions, which deserves further investigation, we target
here the particular limit of ideal MHD, which excludes
plasmoid-like solutions.

The limit defined above, Eqs. (16) and (17), corre-
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FIG. 4: Geometrical parameters of the inner volume V2 as a
function of the sequence parameter X. On the right panel,
R1,1 (crosses) and R2,1 (stars) converge to the theoretical
value (dashed line) computed from Eq.(17).

sponds to the ideal MHD limit, since the island vanishes
completely and magnetic flux surfaces are present ev-
erywhere. As predicted by ideal MHD, we expect a δ-
current forming at the resonant rational surface, which
corresponds here to the two coinciding interfaces. This
singular current density arises naturally because of a dis-
continuity in the tangential magnetic field. More pre-
cisely, we have that

j = [[B]]× n δ(ι-− ι-res) (18)

where n is the unit vector normal to the magnetic flux
surface and here [[B]] = B3(s = −1)−B1(s = +1) since
the volume V2 vanishes in the limit X → 0. We can write
an analytical expression for the discontinuity, [[B]], by
using Eq. (10) in the limit defined by Eqs. (16) and (17).
We must distinguish the two cases µ > 1 and µ < 1 for
which the solution of the Beltrami equation is different,
although the transition from one solution to the other at
µ = 1 is smooth (see Appendix A). In both cases,

lim
X→0

[[Bζ ]] = 0 , (19)

lim
X→0

[[Bθ]] = [[bθ]] cos θ 6= 0 (20)

where bθ can be expressed using Eq. (A7). This indicates
that there is a singular δ-current density along the ζ di-
rection and with a poloidal average of zero. For µ > 1,

[[bθ]] =
2kB0 sin µ̄

∆
(tan k + cot k)(R0,1 −R3,1) (21)

where B0 ≡ B01, µ̄ ≡ µ̄1, ∆ ≡ ∆1, k ≡ k1 and we have
used R1,1 = R2,1. For µ < 1,

[[bθ]] =
2kB0 sin µ̄

∆
2

sinh 2k
(R0,1 −R3,1) . (22)

Figure 5 confirms the presence of such a δ-current den-
sity in the ideal MHD limit. A prediction of the mag-
nitude of the δ-current is therefore possible by using
MRxMHD to compute the discontinuity in the tangential
field that remains when the island is shielded in between
two ideal interfaces.
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θ
]]
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1

FIG. 5: Discontinuity in the poloidal field as a function of
the sequence parameter X. Left: m = 0 component, which is
expected to be zero in the limit X → 0, see Eq. (20). Right:
m = 1 component, expected to be finite in the limit X → 0,
with a theoretical value given by Eq.(21) (dashed line).

We can retrieve the Hahm-Kulsrud-Taylor (HKT) so-
lution for the δ-current [7], by taking the limit of small
µ̄ in Eq. (22), identifying a ≡ ∆ and 2δ ≡ (R0,1 −R3,1),
which gives

[[Bθ]] =
2µ̄B0

sinh a
2δ cos θ (23)

and by noticing that 2µ̄B0 is equal to the poloidal field
at the outer boundary, Bθ3(s = +1), which is labeled
’B0’ in Ref. [7]. This shows that the HKT solution is
only valid in the limit of small rotational transform, i.e.
dominant toroidal field.

Finally, we consider a finite-pressure MRxMHD equi-
librium state, with the purpose of describing the forma-
tion of pressure-driven singular currents around the res-
onant rational surface in the ideal MHD limit. For the
sake of simplicity, we consider a stepped-approximation
to a pressure profile that is linear in toroidal flux,
p(Ψ) = p0(1 − Ψ), Ψ ∈ [0, 1], with a large number
of relaxed volumes, NV � 1. Similarly the rotational
transform on the interfaces approximates a linear profile,
ι-(Ψ) = ι-0(2Ψ− 1).

The solution for the magnetic field Bl in each relaxed
volume Vl is given by Eq. (10) together with Eq. (A7),
and its complete knowledge requires solving the multi-
volume force-balance equations, Eqs. (C3) and (C4),
which provide expressions for the geometry of the inter-
nal interfaces, namely {∆l, Rl,1}.

An example of such an equilibrium is given in Fig. 6,
showing that the magnetic island produced by a resonant
perturbation can be shielded by following the same pro-
cedure as defined previously. More precisely, the enclosed
toroidal flux in the innermost volume is ∆Ψt = Xβ and
the rotational transform on the innermost interfaces is
ι-± = ±Xα.

As before, a δ-current develops at the rational surface
in the limit X → 0, except this time a pressure-driven
singular current is also established around the resonant
rational surface. Figure 7 shows the formation of such
current for finite pressure gradient.

We remark that since MRXHMD is a weak formulation
to the MHD problem [21, 25], the local current densities
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FIG. 6: Poincaré plot of the magnetic field line trajectories
at fixed ζ = 0, for an MRxMHD equilibrium with NV = 21,
ι-0 = 1.618 and p0 = 10−3, and with boundary perturbations
R0,1 = 0 and R3,1 = 1× 10−2. Left: X = 0.6, α = 1, β = 2.5.
Right: X = 0.1, α = 1, β = 2.5.
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FIG. 7: Discontinuity in the m = 1 component of the poloidal
field at each interface as a function of the corresponding
rotational transform ι- for an MRxMHD equilibrium with
NV = 221 and X = 0.05. A divergent current is established
around ι-res = 0 for finite pressure gradient (p0 = 10−3, black
stars), while it vanishes for zero-pressure (p0 = 0, green dots).

produced by the finite field discontinuities in Fig. 7 shall
not be interpreted as local singularities; instead, their
integral over an arbitrary finite volume gives the total
actual current in such volume. This current is expected
to be proportional to the pressure gradient |∇p| ≡ p0 and
to diverge as 1/(ι-− ι-res). Both properties are confirmed
by Fig. 8.

In this section we have developed an analytical model
based on the linearized MRxMHD theory. This model
can accurately (1) describe the formation of magnetic is-
lands at resonant rational surfaces, (2) retrieve the ideal
MHD limit where magnetic islands are shielded, and (3)
compute the subsequent formation of both δ-currents and
pressure-driven 1/x currents. The model is of course re-
stricted to slab, linearly perturbed equilibrium solutions;
however, to our knowledge, this is the first model that
can achieve points (1)-(3) at the same time. In the next
section, we use a fully nonlinear implementation of the
MRxMHD theory to benchmark the analytical results.
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FIG. 8: Left: magnitude of [[Bθ]]m=1 across a fixed interface,
as a function of the pressure gradient |∇p| ≡ p0, showing a
linear relation (black dashed line has slope 1). Right: log-scale
plot of the negative (blue circles) and positive (red crosses)
sides of the curve in Fig. 7, showing a 1/ι- divergence (black
dashed line has slope −1) near the resonant rational surface.

IV. NONLINEAR EQUILIBRIUM
CALCULATIONS

A numerical implementation of the MRxMHD theory,
the Stepped-Pressure Equilibrium Code (SPEC) [21],
was recently developed. SPEC is capable of calculat-
ing three-dimensional MRxMHD equilibria in slab, cylin-
drical and toroidal geometries. SPEC has been bench-
marked against VMEC in the axisymmetric case [20, 21],
and has been used to reproduce self-organized helical
states in reversed field pinches [26].

In this paper, we use SPEC in slab geometry in order to
benchmark the obtained nonlinear results against those
of the semi-analytical, linear model derived in Sec. III.
First, we consider the shielding of a magnetic island in
the zero-pressure, NV = 3 case, and the subsequent for-
mation of the singular δ-current density at the rational
surface. Figure 9 shows a sequence of Poincaré plots ob-
tained from MRxMHD equilibria computed with SPEC
with the exact same input parameters as in Fig. 3. We
observe the shielding of the magnetic island around the
rational surface, as predicted by the linearized model.

The theoretical predictions derived in Sec. III for the
geometry of the internal interfaces and the magnitude
of the δ-current established in the limit of no island,
Eqs. (16), (17), and (21), are benchmarked against the
results of nonlinear calculations carried out with SPEC.
The results of such a convergence study are shown in
Figs. 10 and 11. The convergence is clear and as expected
the agreement between linear and nonlinear results is im-
proved as the boundary perturbation is decreased.

Finally, we consider the multi-volume calculations with
finite pressure gradient. Figure 12 shows the results of
SPEC calculations for an MRxMHD equilibrium with
NV = 63 volumes, finite pressure gradient and an island
squeezed with X = 0.04. The corresponding theoret-
ical predictions of the linearized model are also shown.
Both curves confirm the presence of a divergent pressure-
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FIG. 9: Sequence of MRxMHD equilibrium states computed
from SPEC with decreasing X and where α = 1 and β = 2.5.
All input parameters are exactly the same as in Fig. 3.

driven current around the resonant rational surface. As
discussed in Sec. III, this current has a 1/ι- divergence
and a magnitude proportional to the pressure gradient.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have developed an understanding of
how MRxMHD can capture the formation of the singu-
lar currents that are expected in non-axisymmetric ideal
MHD equilibria. A semi-analytical model that consid-
ers linearized MRxMHD equilibria in slab geometry has
been derived and provides a theoretical framework in
which to explore the physics of magnetic island shield-
ing and singular current formation. In particular, the
Hahm-Kulsrud-Taylor solution [7] for the magnitude of
the δ-current in slab geometry can be retrieved. The
model has then been used as a guide to retrieve the ideal
MHD limit in nonlinear equilibrium calculations carried
out with the SPEC code.

The results presented here are, to our knowledge, the
first nonlinear MHD equilibrium calculations showing the
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FIG. 10: Convergence of the SPEC results towards the theo-
retical prediction of the linearized model for the geometry of
the internal interfaces, Eqs. (16) and (17), as X → 0. Cir-
cles and crosses correspond, respectively, to the errors in the
m = 0 and m = 1 components of the internal interfaces geom-
etry, namely E = |∆SPEC

1 −1/2| and E = |RSPEC1,1 −κR3,1/2|.
As expected, decreasing the boundary perturbation ampli-
tude, ε = R3,1, improves the agreement between the linear
and nonlinear results. The dashed line has slope β, which is
the expected convergence rate for the m = 0 component of
the geometry.
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FIG. 11: Convergence of the SPEC results towards the theo-
retical prediction of the linearized model for the δ-current am-
plitude, Eq. (21), as X → 0. Circles and crosses correspond,
respectively, to the errors in the m = 0 and m = 1 compo-
nents of the field discontinuity, namely E = |[[Bθ]]SPECm=0 | and
E = |[[Bθ]]SPECm=1 +4kB0 sin µ̄(tan k+cot k)R3,1|. As expected,
the agreement between the linear and nonlinear results is im-
proved by decreasing the boundary perturbation amplitude.
The dashed line has slope α, which is the expected conver-
gence rate for the m = 0 component of the field discontinuity.

formation of both δ-currents and pressure-driven 1/x cur-
rents around resonant rational surfaces. Moreover, the
results presented here encourage the use of MRxMHD
to perform magnetic equilibrium calculations in three-
dimensional magnetically confined plasmas, where both
magnetic islands and singular currents are expected to
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FIG. 12: Discontinuity in the m = 1 component of the
poloidal field at each interface as a function of the correspond-
ing rotational transform ι- for an MRxMHD equilibrium with
NV = 63, R3,1 = 10−2, p0 = 10−3 and X = 0.04. A divergent
current is established around ι-res = 0. Red circles are from
SPEC and black stars are from the linearized model.

exist. In particular, SPEC is capable of computing
MRxMHD equilibrium states in slab, cylindrical, and
toroidal geometries, and thus represents a promising tool
for the computation of three-dimensional magnetic equi-
libria in fusion devices.

In the future, cylindrical MRxMHD equilibria will be
considered in order to retrieve the Rosenbluth-Dagazian-
Rutherford solution [8, 27] for the saturatedm = 1, n = 1
ideal kink mode and the current sheet associated with
it. This should represent a step further in the computa-
tion of three-dimensional MHD equilibria with singular
currents in toroidal geometry. Also, the presence of sec-
ondary islands around a shielded rational surface [28, 29],
which are compatible with MRxMHD, will be studied.
Finally, the possibility of magnetic island shielding with
a single ideal interface presenting a discontinuous rota-
tional transform will be explored.
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Appendix A: Single-volume, perturbed solution

The general solution to Eq. (11) is the sum of the ho-
mogeneous solution and a particular solution to Eq. (11),

bζ(s) = ay(s)+ âŷ(s)− µ̄
[
ε0(1−s)+ε1(1+s)

]
Bθ,u (A1)

where a, â are constants and {y, ŷ} is the basis of func-
tions for the homogeneous solution,

{y, ŷ} =

{
{cos (ks), sin (ks)} if λ ≥ 0
{eks, e−ks} if λ < 0

(A2)

with k ≡
√
|λ|. Imposing the boundary conditions,

bζ(±1) = 0, we find a and â. For λ ≥ 0, or equivalently
µ ≥ 1, we have

a =
µ̄

cos k
(ε1Bθ,u(1) + ε0Bθ,u(−1)) (A3)

â =
µ̄

sin k
(ε1Bθ,u(1)− ε0Bθ,u(−1)) (A4)

and for λ < 0, or equivalently µ < 1, we have

a =
µ̄

sinh (2k)
(ε1Bθ,u(1)ek − ε0Bθ,u(−1)e−k) (A5)

â = − µ̄

sinh (2k)
(ε1Bθ,u(1)e−k − ε0Bθ,u(−1)ek) . (A6)

The three components of the perturbed solution for
the magnetic field, which are coupled via the Beltrami
equation, are then

bs = −∆2

4µ̄

(
ay1(s) + ây2(s)

)
bθ = − 1

µ̄

(
ay′1(s) + ây′2(s)

)
+ µ̄

[
ε0(1− s) + ε1(1 + s)

]
Bζ,u

bζ = ay1(s) + ây2(s)− µ̄
[
ε0(1− s) + ε1(1 + s)

]
Bθ,u (A7)

and are uniquely determined by the parameters
(µ̄, B0, B̂0, µ̄,∆, ε0, ε1). Equation (A7) satisfies the Bel-
trami equation, ∇×B = µB, up to first order in ε.

Appendix B: Toroidal flux and rotational transform

The rotational transform on the interfaces is given by

θ̇± ≡ B · ∇θ
B · ∇ζ

∣∣∣∣
s=±1

=
Bθ,u(s) + bθ(s) cos θ
Bζ,u(s) + bζ(s) cos θ

∣∣∣∣
s=±1

(B1)

where the magnetic field components are given by
Eq. (10) together with Eq. (A7). In particular, we have
that bζ(s = ±1) = 0. Equation (B1) is a function of
θ and therefore a ”local” quantity. We can however in-
troduce a straigh-field-line angle, θs = θ + w sin θ, with
w ∼ ε such that

B · ∇θs
B · ∇ζ

∣∣∣∣
s=±1

≡ ι-± (B2)
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is a constant. This constraints the value of w,

ι-± =
B · ∇θ
B · ∇ζ

∣∣∣∣
s=±1

dθs
dθ

=
Bθ,u(±1)
Bζ,u(±1)

+
wBθ,u(±1) + bθ(±1)

Bζ,u(±1)
cos θ +O(ε2)

(B3)

giving w± = −bθ(±1)/Bθ,u(±1) and therefore the rota-
tional transform is, to first order in ε,

ι-± =
Bθ,u(±1)
Bζ,u(±1)

=
±B0 sin (µ̄) + B̂0 cos (µ̄)
B0 cos (µ̄)∓ B̂0 sin (µ̄)

(B4)

which is the unperturbed rotational transform.
The enclosed toroidal flux in the volume is given by

∆ψt =
∫

Σ

B · dσ

=
∫ 2π

0

∫ 1

−1

J (s, θ)Bζ(s, θ)dsdθ

=
∆
2

∫ 2π

0

∫ 1

−1

(1 + (ε1 − ε0) cos θ)(Bζ,u(s) + bζ(s) cos θ)dsdθ

= 2πB0∆ sin µ̄/µ̄+O(ε2) (B5)

where J =
√
g is the Jacobian. Equation (B5) is, to first

order in ε, the unperturbed toroidal flux.

Appendix C: Multi-volume, force-balance condition

Assume that (∆ψt,l, ι-+l , ι-
−
l , pl) are provided in each vol-

ume, as well as the system size Lsys =
∑NV

l=1 ∆l. Invert-
ing Eqs. (B4) and (B5) we can determine (µ̄l, Ql, Q̂l),
where Ql ≡ B0l∆l and Q̂l ≡ B̂0l∆l. Then the param-
eters that need to be determined in order to uniquely
define the solution for B are {∆l, Rl,1} for l = 1, . . . NV ,
and these can be computed by solving the force-balance
condition, which is

[[p+
B2

2
]] = 0 (C1)

where [[x]] = xl+1(s = −1)−xl(s = +1) is the difference
in x between the outer side and the inner side of each
internal interface separating volumes Vl and Vl+1. We
thus need to compute the quantity B2

l on the interfaces,
which is

B2
l (±1, θ) = B2

θ (±1, θ) +B2
ζ (±1, θ) +O(ε2)

= fl,0 + 2 cos θf±l,1 +O(ε2) (C2)

where fl,0 = B2
0l + B̂2

0l and f±l,1 = Bθ,u(±1)bθ(±1),
which can be written in terms of (µ̄l, Ql, Q̂l) and the yet-
not-determined geometrical parameters {∆l, Rl,1}, with
l = 1, . . . NV .

The m = 0 component of the force-balance condition
across each interface, which is 2pl + fl,0 = 2pl+1 + fl+1,0

can be written as

2(pl−pl+1)∆2
l∆

2
l+1+(Q2

l+Q̂
2
l )∆

2
l+1−(Q2

l+1+Q̂2
l+1)∆2

l = 0
(C3)

and consists of a nonlinear system of NV − 1 equations
for {∆l}, although the system becomes linear in the zero-
pressure limit.

The m = 1 component of the force-balance condition
across each interface, which is f+

l,1 = f−l+1,1, can be writ-
ten as

(C+
l − C

−
l+1)Rl,1 +Dl+1Rl+1,1 +DlRl−1,1 = 0 (C4)

and consists of a linear system of NV − 1 equations for
{Rl,1},where C±l and Dl are defined as

C±l =± kl
∆3
l

(Ql sin µ̄l ± Q̂l cos µ̄l)2(tan kl − cot kl) (C5)

+
µ̄l
∆3
l

[±(Q2
l − Q̂2

l ) sin 2µ̄l + 2QlQ̂l cos 2µ̄l] ,

Dl =
kl
∆3
l

(Q̂2
l cos2 µ̄l −Q2

l sin2 µ̄l)(tan kl + cot kl) (C6)

for µl > 1 and similarly for µl < 1. The system (C4) can
be written as a matrix equation,

MR = S, (C7)

where R = (R1,1, R2,1, . . . , RNV −1,1) and M, S are
known once the system (C3) has been solved. More pre-
cisely, S = (−D1R0,1, 0, . . . , 0,−DNV

RNV ,1) and

M =

0BBBBBBBB@

C+1 − C
−
2 D2 0 0 0

D2 C+2 − C
−
3 D3 0 0

0 D3 C+3 − C
−
4

. . . 0
...

...
. . .

. . . DNV −1

0 0 0 DNV −1 C+NV −1− C
−
NV

1CCCCCCCCA
(C8)

is an (NV − 1)× (NV − 1) tridiagonal matrix.
In the zero-pressure, NV = 3 case, system (C3) is linear

in {∆l} and the solution is

∆1 =
h13

1 + h13 + h23
Lsys (C9)

∆2 =
h23

1 + h13 + h23
Lsys (C10)

where

h13 ≡
√

(Q2
1 + Q̂2

1)/(Q2
3 + Q̂2

3) (C11)

and

h23 ≡
√

(Q2
2 + Q̂2

2)/(Q2
3 + Q̂2

3) (C12)

are given, and here we take Lsys = 1. The system
(C7) can then be solved for R by inverting the matrix
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M, namely R = M−1S. Consider the limit defined in
Sec. III, namely ι-±2 = ±Xα and ∆Ψt,2 = Xβ , where
α, β > 0 and X → 0. In this case we have Q̂2 = 0,
Q2 ∼ Xβ , and (Q1, Q̂1, µ̄1) = (Q3,−Q̂3, µ̄3) ≡ (Q, Q̂, µ̄),
therefore h13 = 1 and h23 ∼ Xβ . Hence, as expected,
limX→0 ∆2 = 0 and limX→0 ∆1 = limX→0 ∆3 = 1/2.
On the other hand, all the elements of M go to zero
in this limit, yet the elements of S do similarly and a
non-trivial solution for R still exists. For α > β, we get
limX→0R1,1 = κR0,1 and limX→0R2,1 = κR3,1, which
does not make the island vanish except in the trivial case
R0,1 = R3,1. For β > α, however, we get

lim
X→0

R1,1 = lim
X→0

R2,1 =
κ

2
(R0,1 +R3,1) , (C13)

and thus the island vanishes asymptotically as X → 0.
The function κ ∈ [0, 1] is given by

κ = − lim
X→0

D3

2C+
1

=
k

µ̄

tan k + cot k
tan µ̄+ cot µ̄

(C14)

where k =
√
µ2 − 1/4 and µ̄ = µ/4. Also, in the limit

X → 0 we have that ι-+3 = tan(µ/2) and thus κ = κ(ι-+3 )
only depends on the external rotational transform. Fi-
nally, one must be careful and verify that the two inter-
nal interfaces do not cross each other, i.e. check that
|R2,1 −R1,1| < ∆2 when the volume V2 is squeezed. For
β > α, we have |R2,1 − R1,1| ∼ Xβ−α and therefore
|R2,1 − R1,1|/∆2 ∼ X−α. Thus the only way to ensure
that the two internal interfaces do never cross each other
is to have α = 0. Alternatively, one can first take the
limit ∆Ψt,2 → 0 and then take the limit ι-±2 → 0. In all
cases Eq. (C13) is satisfied.
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