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The adiabatic limit of a recently proposed dynamical extension of Taylor relaxation, multi-region
relazed magnetohydrodynamics (MRxMHD) is summarized, with special attention to the appropriate
definition of relative magnetic helicity. The formalism is illustrated using a simple two-region,
sheared-magnetic-field model similar to the Hahm-Kulsrud-Taylor (HKT) rippled-boundary slab
model. In MRxMHD a linear Grad—Shafranov equation applies, even at finite ripple amplitude. The
adiabatic switching on of boundary ripple excites a shielding current sheet opposing reconnection
at a resonant surface. The perturbed magnetic field as a function of ripple amplitude is calculated
by invoking conservation of magnetic helicity in the two regions separated by the current sheet. At
low ripple amplitude “half islands” appear on each side of the current sheet, locking the rotational

plasma

transform at the resonant value.

Beyond a critical amplitude these islands disappear and the

rotational transform develops a discontinuity across the current sheet.

I. INTRODUCTION

The deficiencies of ideal MHD for describing typical
fusion plasmas arise from its assumption of infinite elec-
trical conductivity, which implies “frozen-in” magnetic
flux [I], and also its assumption of zero thermal conduc-
tivity, which implies frozen-in entropy (i.e. a thermody-
namically adiabatic equation of state applying in each
fluid element). The problem with frozen-in entropy is
obvious—thermal conductivity along magnetic field lines
is in fact extremely high. The problem with frozen-in
flux is that it precludes changes in magnetic-field-line
topology through such reconnection phenomena as the
growth of magnetic islands at resonant magnetic surfaces
due to externally applied resonant magnetic perturba-
tions (RMPs [2]), or through spontaneous tearing mode
instability [3].

To allow for magnetic reconnection and parallel ther-
mal equilibration, while retaining the non-dissipative
character of ideal MHD, we postulate that phenomena
outside the scope of the present paper lead to relaxation
[ to a force-free magnetic field B in appropriately se-
lected subregions of the plasma, but that global relax-
ation is prevented by ideal-MHD interfaces [5] separating
the relaxation regions.

As there is typically a local tangential discontinuity
across such interfaces (and a discontinuity in |B] if they
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FIG. 1. Boundaries and magnetic surfaces in a typi-

cal Hahm—Kulsrud—Taylor (HKT) rippled-boundary case (see
Sec. for details). The unperturbed boundaries are at
xz/a = 1. The shielding current sheet is along the y-axis,
which separates the upper and lower relaxed-MHD regions.
Note the half islands near the current sheet.

support pressure differences) the interfaces consist of
globally extended current sheets. In this paper we model
the excitation of a single such current sheet by an RMP
switched on adiabatically at the boundary, assuming a
very simple geometry, namely the Hahm—Kulsrud—Taylor
rippled-boundary slab model [6] illustrated in Fig. [I} We
treat the plasma in the two regions on either side of this
current sheet as separately Taylor-relaxed [4] plasmas.
It is physically reasonable to assume relaxation
throughout these two regions as, in regions with constant
equilibrium pressure, adiabatic relaxed MHD agrees with
linearized ideal-marginal [7] MHD away from resonances
[8, ). On the other hand, near the resonant current
sheet, relaxed MHD is certainly more appropriate than
linear ideal MHD [10, [11] and arguably more appropriate
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than fully nonlinear ideal MHD.

We shall not consider the topological stability of the
excited current sheet against island formation, due to
reconnection within the current sheet, assuming that it
retains its topological integrity for a sufficiently long time
that the issue of its stability can be left to further work.

Although the concept of plasma self-organization to
static equilibrium states through a relaxation process
describable by a (minimum energy) variational princi-
ple is a well developed one [12], the generalization to a
fully fledged fluid dynamics, multi-region Relaxed Mag-
netohydrodynamics (MRxMHD) has only recently been
enunciated [13]. Unlike our previous multi-region gener-
alizations of Taylor relaxation [14], this new formulation
is a fully dynamical, time-dependent field theory whose
self-consistency is ensured by deriving it from an action
principle rather than an energy principle. The resulting
model is simpler than ideal MHD, yet may in some cases
be more physical due to the aforementioned problems
with ideal MHD.

We summarize the general MRxMHD formalism as
presented in [13] in Sec. [[I, adding discussion of the cor-
rect relative helicity to use in MRxMHD and the nature
of the adiabatic (slow) limit.

The HKT model [6] is developed in Sec. where it is
shown that MRxMHD leads to a linear Grad—Shafranov
describing equation the magnetic field for ripple of ar-
bitrary amplitude. In the HKT model there is reflec-
tion symmetry about the resonant current sheet inter-
face, which, in Cartesian coordinates x,y, z, we take to
be located on the plane z = 0. Due to the assumed re-
flection symmetry, |B| is continuous across z = 0 so only
tangential discontinuities in B can arise. While the con-
cept of time is implicit in the present paper, we assume
the switching on of boundary ripple to be sufficiently
slow that negligible flow is excited—the plasma evolves
through a continuous sequence of equilibrium states. It is
our aim to add a quasi-dynamical dimension to the static,
equilibrium calculations of Loizu, Hudson et al., [I5] [16]
so as to address the physical accessibility of the equi-
libria with current sheets and discontinuous rotational
transform they calculated. This work is also complemen-
tary to the ideal-MHD HKT simulation study of Zhou
et al. [I7], who demonstrate the formation of a nonlin-
ear ideal current sheet using a variational integrator in
Lagrangian labeling that enforces the frozen-in-flux con-
dition exactly.

In Sec. [[V] we establish the general formalism for cal-
culating solutions of the Beltrami equation in the Grad-
Shafranov represention, including, in Sec.[[V D] a Fourier
decomposition of Beltrami fields into plane waves. In [V]
we give general expressions in Grad—Shafranov represen-
tation for the magnetic energy, the vector potential and
the magnetic helicity.

These formal developments are used to compute the
spatially evanescent plasma response to boundary ripple,
determining the Fourier coefficients from the boundary
conditions, flux and helicity constraints. It is this in-

ternal disturbance that resonates at the x = 0 magnetic
surface to excite the shielding-current-sheet states, which
are explored numerically in[VI over ranges of initial mag-
netic shear, ripple amplitude, and poloidal mode num-
ber. In Sec.[VIA]studies are performed using amplitudes
small enough to need only the lowest spatial harmonic
in the Fourier expansion, as in [6]. Scalings with respect
to initial magnetic shear and amplitude are determined
empirically. It is found that the excited current sheet
consists both of a k, # 0 ripple response and a net aver-
age ky = 0 current. For amplitudes above the threshold
value at which the net average current (quadratic in am-
plitude) begins to dominate the ripple currrent (linear in
amplitude), a jump in rotational transform occurs across
the current sheet.

In Sec. [VIB] further studies at higher amplitude are
performed by including more terms in the Fourier sums,
so as to maintain a sinusoidal boundary ripple. This al-
lows investigation of the dependence on poloidal mode
number, m, of the threshold amplitude for rotational
transform discontinuity. It is found that the threshold
is highest at lowest m, presumably because the exponen-
tial screening of the sheet current ripple is lowest in this
case.

Conclusions are given and directions for further work
are indicated in Sec. [VII] followed by Appendix [A] show-
ing why loop integrals §dl-A on interfaces must be
included as MRxMHD constraint invariants, and Ap-
pendix [B] illustrating why the simple [A-BdV form of
the magnetic helicity (i.e. with no vacuum helicity sub-
tracted) is the correct helicity constraint invariant to
use in MRxMHD under the constraint derived in Ap-

pendix [A]

II. THE DYNAMICAL MRXMHD MODEL

In [I3] the equations for MRxMHD were derived as
Euler-Lagrange equations from a Lagrangian

B-B
L=S"r,- | 2Zav, 1
zi: ’ /QV 2 S

where the volume integration [dV in the last term is
over a vacuum region €),, with B denoting magnetic field
and po the permeability of free space. (However in the
HKT model there is no vacuum region, so we do not
need this term in the present paper.) The sum ) . is
over Lagrangians L; given by

L; :/ LMED gy T:i(Si — Sio) + i (K — Kio) . (2)
Q.

i

Here Q; denotes a plasma relaxation region and £MHP ig
the standard MHD Lagrangian density [I8, [19], pv?/2 —
p/(y — 1) — B?/(2ug), with p denoting mass density, p
the plasma pressure, and ~ the ratio of specific heats.
As in ideal MHD, in MRxMHD mass is conserved mi-
croscopically (i.e. in each fluid element dV') by constrain-



ing it holonomically [I8] 9] to the strain field of La-
grangian fluid element displacements.

However, instead of using ideal-MHD holonomic La-
grangian constraints on p and B to conserve entropy and
flux microscopically we treat them as Eulerian fields. The
constraint V-B = 0 is enforced by using the representa-
tion B = VX A, regarding the vector potential A as an
independently variable field, constrained only by conser-
vation of total magnetic helicity 2pgK; in each macro-
scopic subregion ();, and conservation of loop integrals
$d1-A on the boundaries 9€; (see Appendix. Likewise
p is constrained only by conservation of total entropy .S;.
These nonholonomic constraints of constant K; and S;
are then enforced through Lagrange multipliers u; and
T;, respectively.

The entropy S;, given in [13], is a functional of p and
p but its specific form will not be needed in this paper.
However the magnetic helicity constraint functional,

A-B

Q, 2Ho ®)

will play a critical role in our analysis of adiabatic re-
sponse to ripple switch on. After the Euler-Lagrange
equation from variation of A is derived and solved, u; is
chosen so as to satisfy the helicity constraint K; = K
[the subtracted constant Ko in Eq. being the initial
value of K;], i.e. so the initial and final values cancel.
As the problem we address in this paper involves time-
dependent geometric changes in the boundaries we dis-
cuss below the constraints on the gauge of A required for
K; to be truly invariant under such boundary changes,
an issue not resolved in [13].

We assume the plasma in each relaxation region is en-
tirely enclosed by its boundary (the no-gap condition
[20]), implying the tangentiality condition

n;-B =0 on 99, , (4)

where 0f); denotes the boundary of region 2; and n; is
the unit normal at each point on 0€);.

This boundary condition is intimately connected to the
question of invariance or otherwise of K; with respect to
gauge changes A — A + V, which is equivalent to ask-
ing whether the volume integral [, V-(By)dV vanishes
or not. Using Gauss’ theorem and Eq. reduces this
volume integral to a sum, over all topologically distinct
cross sections Sj, of surface integrals sz [x], n;-BdS,
where [x];, denotes the discontinuity (jump) in x across
Si.

Thus Kj; is invariant under variations in y if this gauge
potential is single valued, that is if [x], = 0 over the v
cross sections S;, where the genus v is the number of
topologically distinct directions in Q; [13]. (The genus in
our annular tori Q4 is 2, corresponding to the toroidal
and poloidal directions.)

However, single-valued gauge potentials do not exhaust
the topologically allowed possibilities: consider trans-
formations of the form A — A + V., where the

v non-single-valued functions xl; are harmonic func-
tions (i.e. solutions of Laplace’s equation in ;). The
jumps (periods) [[xiﬁ]]l are constant over each S, so
Js, [Xi] ;B dS = [xiy], @1, where @; is the mag-
netic flux through S;. Thus K; would not be gauge in-
variant with respect to such transformations. However,
such transformations during the evolution of the plasma
are ruled out by requiring constancy of loop integrals
§d1-A on the boundaries (the no-gaps condition, see Ap-
pendix , because allowing [[XlHi]]l # 0 would change
one or more of these loop integrals on 0€);.

Most of the loop integrals §dl-A can be related to the
invariant fluxes ®; within the plasma, but there remains
the problem that the magnetic helicities Eq. , while
invariant because of the no-gaps condition, are still not
uniquely defined because of the initial gauge freedom
arising from the unknown vacuum poloidal flux thread-
ing the toroidal vacuum-plasma interface. There are his-
torically two distinct approaches to fixing this problem,
one based on subtracting off products of line integrals
§ dl-A on boundaries [8, 12, 21] and the other based on
subtracting off corresponding vacuum helicities [22-24]
to form relative helicities. Both methods involve mag-
netic fluxes (though represented in different ways) and
are both appropriate for fized-boundary problems. How-
ever the present problem involves varying boundaries and
it is not clear that the vacuum helicity is invariant in
such cases (see Appendix , casting doubt on the util-
ity of the relative helicity concept. This quandary is re-
solved in Appendix [A] in favor of making invariance of
boundary loop integrals ¢ dl-A a fundamental postulate
of (no-gaps) MRxMHD but working with the new rela-
tive helicity used in [I3], K; — Kjp, which is relative to
the initial helicity rather than to the vacuum helicity.

Variation of A (holding pu; fixed) in Hamilton’s Action
Principle, 68 = 6 [L dt = 0, gives a Beltrami equation,

VxB = 1,B (5)

in each subregion, to be solved under the tangentiality
boundary condition Eq. .

The action principle, under variations of p and the fluid
positions & within €);, gives the compressible Euler fluid
equations for the mass velocity v, mass density p and
pressure p = 7,;p [13]. However, as we assume adiabatic
switching on of the RMP, v is negligible; the Euler fluid
equations are not needed here. Suffice it to say that the
plasma response to boundary ripple becomes incompress-
ible in the very low frequency limit [25], so p and p are
constant in space (and also time if the volumes of Q4 are
kept constant during ripple switch on).

Variation of fluid positions at the interface 0€2; ; =
08 N 08Y; gives the force-balance condition across the
current sheet on this boundary

BQ]]
|[ 2“0 i,j

the brackets [-]; ; denoting the jump in a quantity as the



observation point crosses the interface from the €; side
of to the §2; side.

However, due to the reflection symmetry about x = 0
assumed in our simple HKT-like model, illustrated in
Fig. the interface between the upper and lower re-
laxation regions (which we denote by Q. and Q_, re-
spectively) continues to be located on the x = 0 plane
throughout the switching on of the RMP. Also, B?
remains an even function of z and hence continuous
(though not necessarily differentiable) across the inter-
face, and also [p] = 0. Thus Eq. @ is trivially satisfied
in this paper.

III. HKT-BELTRAMI SLAB MODEL
A. Unperturbed pseudo-toroidal equilibrium

In this subsection we limit attention to the initial, un-
perturbed state of a slab plasma, before boundary rip-
ple is switched on. Then all magnetic field lines can
be assumed to lie in parallel planar magnetic surfaces
x = const.

To relate slab geometry, as best we can, to that of a
toroidal confinement device such as a tokamak, we as-
sume the system to be topologically periodic in y and
z, with periodic boundary condition lengths L, = 27a
and Ly, = 27 R, respectively. Here R is the nominal ma-
jor radius of the device and a is a representative radial
scale length, typically less than the mean minor radius
of an actual plasma. The y and z periodic variables are
then linearly related to the 27-periodic poloidal angle 6
and toroidal angle ¢ of a toroidal magnetic coordinate
system,

Y z
== =—. 7

b (=2 7

An unperturbed equilibrium field line passing through
the point 8 = 6y, ¢ = 0, on surface x = x( is then

described by the line in 6, { space
z
0 = 0o + ¢(z0)C, C:E, (8)

where ¢(xg) [= 1/¢(xg), where ¢ is the unperturbed
“safety factor”] is the rotational transform on the flux
surface. From Eq. , the line Eq. is given in z, y
space as

az
y = aby + e(x)ﬁ , (9)

so that the general infinitesimal line element along a field
line on an arbitrary surface z = const is

dl = dyey + dze,
10
= {e(m)%ey—&-ez dz , (10)
by Eq. @, with unit basis vectors e, = Vy and e, =
Vz. Thus the equilibrium magnetic field is parallel to

t(x)ae, + Re., so we may write

t(x)ae, + Re,

+(x)%a® + R?
.28 + q(z)Re,
a? + q(x)?R?

B = B(x)
(11)

Thus B,/B, = ta/R and B,/B, = qR/a, giving the

well-known expressions

RBy(l‘) aBz(z)
= —= =—=. 12
@) = 5 1 = (12)
Assuming an equilibrium with a sheared magnetic
field, only an isolated magnetic surface(s) & = Zyes
will resonate with a wavelike perturbation with poloidal
mode number m such that

ky = m(27/Lpo) = m/a (13)

and toroidal mode number n [k, = —n(27/Lioy) =
—n/R] [26] when the phase fronts coincide with field
lines. That is, when k - B = 0, which, using Eq. ,
is the condition ¢ (Zyes) m —n = 0, or

b(%res) = %a q (xres) == % . (14)

In the HKT model [6] #,cs = 0 and the boundary ripple
is applied only in the poloidal direction, son =0, k, = 0,
and k, = m/a [27]. As |g(2ves)| = oo we henceforth
use only ¢(z) to characterize the pitch of the equilibrium
field.

We depart from [6] in taking both unperturbed and
perturbed magnetic fields to obey Eq. (b)), though the
Lagrange multiplier x must change slightly with increas-
ing ripple amplitude in order to satisfy the constant-
magnetic-helicity constraint. (However pu will be the
same in both Q; and Q_ due to the assumed symme-
try about z = 0.) Denoting the unperturbed value of u
by po (not to be confused with the vacuum permeability
to) we find the unperturbed solution of Eq. ,

B© (x) = Bo(sin pox ey + cos poxe,) , (15)

where By is a constant. Using Eq. we find the rota-
tional transform in the unperturbed state,

+(x) = gtan HoZ . (16)

B. Grad-Shafranov (GS) representation

We follow Hahm and Kulsrud [6] in using a flux-
function representation for the full, perturbed magnetic
field, defining 1 (z,y) such that

B=F())e,+e,xVy (17)

where F'(v) is B, expressed as a function of .



Note that Eq. implies that B-Vy = 0, i.e. B
is everywhere tangential to level surfaces ¢ = const, so
that ¢ has the property of being a label for magnetic
surfaces. Figure [l|shows rippled magnetic surfaces given
by constructing representative contours of ¥ (z,y) after
m = 2 [see Eq. ] sinusoidal boundary ripple of am-
plitude @ = 0.21 [see Eq. ] has been switched on,
starting from the “tokamak-relevant” case (ppa = 0.2)
shown below in Fig.

Note that 1 is not unique, because it can be changed
by a constant amount without changing the observable
e. X V1), the poloidal magnetic field. Such a baseline shift
also changes the functional form of F' to retain the invari-
ance of the observable B,, the toroidal magnetic field.
To remove this arbitrariness we set the baseline for
by fixing it on both boundaries z = +a14qy(y) to be the
constant value ¥ = 1,: in the HKT model we assume
¥(x,y) to be even in z and to increase away from x = 0,
as |y| increases, up to 1,. Though ¥ (z,y) is continuous
across the current sheet at x = 0, its derivative 9y% is
in general discontinuous there, so it is sometimes con-
venient to consider ¢ (z,y) as defined on two Riemann
sheets intersecting along the cut at x = 0.

Note that Eq. implies

VxB=V¥e, — F'(y)e,xV (18)
so that, crossing Eq. with Eq. ;
(VXB)xB = —(V*) + FF)V1 . (19)

For force-free fields, such as those described by Eq. ,
the left-hand side of Eq. vanishes, leaving us with
the equation

V3 4+ FF' =0, (20)

which is the Grad-Shafranov (GS) equation in slab ge-
ometry in the special case p’ = 0. As will be shown
below, this is a linear equation and reduces, in the limit
ua — 0, to the Laplace equation assumed in [6]. The
GS representation of Beltrami solutions is also useful in
axisymmetric toroidal geometry [28].

Substituting Eq. and Eq. in Eq. we get
two equations defining a Beltrami field in the GS repre-
sentation,

V2 = puF (21)
and
F($) = —p, (22)
which are consistent with the GS equation, Eq. . In-
tegrating Eq. gives
F($) = C — (23)

where C' is a spatial constant, though it is not invariant
under application of ripple. Also, as the left-hand side
of Eq. 7 F = B,, is a physical observable, C' must

counterbalance the arbitrary baseline constant included
in 1.

In the following we find it useful to define the area-
weighted average of an arbitrary function f over a surface
of section across the upper relaxation region €2 as

- B 1 2ma ZThdy (¥)
f:<f>:‘A7+/0 dy/o da?f(x,y), (24)

where A is the cross-sectional area over one topological
periodicity length,

2ma Thay (Y)
Ay = / dy/ dz = 2ma (Tpay) , (25)
0 0

the total cross-sectional area across the whole plasma be-
ing A=Ay +A_ = 2A4. (In general two-relaxation-
region problems we would need to define separate aver-
aging operators (f), in 4 and Q_, but the reflection
symmetry assumed in the HKT model means these aver-
ages are equal for even parity functions and the negative
of each other for odd parity functions.) Note we have in-
troduced two equivalent averaging notations, (- --) being
a useful alternative to =~ for lengthy expressions.

To decompose C' into an invariant part and a geomet-
rically dependent part we average Eq. over a surface
of section of 24, as in Eq. , to give

C=TF+up, (26)
using which Eq. becomes

F=F—u, (27)
where

b=y -7 (28)

is the deviation from the mean poloidal flux 9. Deter-
mination of the non-invariant quantity ¢ (and hence C)
will be discussed in Sec. [V Bl

C. Fluxes

The poloidal flux T(y)) between the current sheet,
where 1) = 1.y, and a magnetic surface ¥ = 1) is the
surface integral of the flux density e,-e,XVy = 0,9
over an area in any plane y = const bounded by the cur-
rent sheet z = 0, the magnetic surface labeled by 1, and
the lines z = const and z = const + 27 R,

2nR  pat(sly) b
WWJ;AMA ;%M:%W*%MR

(29)
where x = 2% (1s|y) denotes the upper (+) or lower (—)
branch of the solution to the equation ¥ (z,y) = s, for
given y. (Where y is arbitrary for magnetic surfaces out-
side half islands such as are seen in Fig. [T} but, for defin-
ing the “private flux” within such an island, y must ob-
viously be restricted to lie within the island.) The linear
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FIG. 2. Unperturbed (plane boundary) profiles in the RFP-
relevant case poa = 1.4. (a) Toroidal field B, = F =
Bgcos poz.  (b) Rotational transform ¢ ¢) Toroidal flux
®. (d) Poloidal flux ¥. Parameters and units are such that
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FIG. 3. Unperturbed (plane boundary) profiles in the
tokamak-relevant case poa = 0.2. (a) Toroidal field B, =
F = By cos puoz. (b) Rotational transform ¢. ¢) Toroidal flux
O (@ (z)). (d) Poloidal flux ¥. Parameters and units are
as in Fig. E the choices of o in the two figures being discussed

in Sec. [[IIDI

relation between the poloidal flux ¥ and the function
1) justifies the terminology poloidal fluz function for the
latter.

The fact that U(i(x,y)) is an even function of = in
the HKT model is illustrated in Figs. 2] and [3] for the
unperturbed case Eq. (in which special case there is
no current sheet, so ¥ is differentiable at « = 0).

Assuming here the magnetic surface spans the full
poloidal periodicity length 27a (i.e. it is not in a half
island) we also define the toroidal flur ®(¢) as a mag-
netic surface quantity by integrating the toroidal mag-
netic field B, = F(¢) over one period in y between the
resonant surface x = 0 and the given magnetic surface
T = Ii(¢s|y) in Qy,

2ma ot (e |y)
* s) = d o) dx .
= (1) /O y/o F() de

[Note that ®T(1)s) = =P~ (¢bs) so ®(v(x,y)) is an odd
function of z, as illustrated in Figs. [2| and ] We gen-
eralize the “safety factor” ¢, defined for the unperturbed
field in Eq. (12), as ¢(¢) = d®/d¥, which, in the GS
representation Eq. , can be written

oo JFW) [ dl
Cl) =E5R f[;ol vl

(30)

(31)

where dl = (dz? + dy?)'/? is an element of length along
a contour ¢ = 15 running between y = 0 and y = 27a.
This general definition applies equally to the perturbed
and unperturbed system.

However, as mentioned in Sec [} it is more convenient
to work with the reciprocal of ¢, the rotational transform,

(32)

As illustrated for the unperturbed case in Figs. 2] and [3]
¢+ is an odd function of x. In this special case it is con-
tinuous at = 0, but for large enough ripple amplitude
we shall find that it may be discontinuous there.

Dotting both sides of Eq. with e, and integrating
over one wavelength of the cross section, we thus find our
first invariant @, = @ (1),) — D7 (vhg) = 207 (1)), the
total toroidal fluz, to be

(ptor - \AF . (33)

The toroidal flux and magnetic helicity contained be-
tween the everywhere perfectly conducting boundaries
x = £xpay(y) are conserved throughout, from switch on
to reconnection. Also, to avoid the external work re-
quired to change the mean toroidal field F and pressure
p we assume the rippling of the walls is done in such way
as to preserve area,

A=Ay = dra® | (34)
which from Eq. is ensured by requiring
(Tbay(y)) = a, (35)

making the adiabatic plasma response incompressible

With area thus conserved, toroidal flur conservation is
equivalent to invariance of F, which also applies sepa-
rately in both upper and lower relaxation regions due to



the assumed reflection symmetry. Thus in both regions
the toroidal flux conservation condition is equivalent to
the constraint

F—Fy=0 (36)

during switch-on of the boundary ripple perturbation,
where Fy denotes the unperturbed value of the mean
toroidal field, which is calculated below.

D. Unperturbed state in GS representation

From Eq. the unperturbed toroidal magnetic field
is Fo(z) = By cos pgz. Thus

Fo = By (cos o), (37)

where

1 a
(cos po)y = f/ dx cos oz
0

a,
_ sin poa (38)
Hoa
2,2
~ 1= B 10 ((noa)") -
Note the interesting fact that Fy has zeros at
loa = TN (39)

for integer n # 0, corresponding to extreme reversed-field
states. However we shall not consider such large values
of ppa in this paper.

For use later in this paper it will be found useful to
define U, the plane-slab unit-vector solution of Eq.
with general u,

U(x|p) =sinpz e, +cospxe, . (40)

In terms of U, the unperturbed field B(?) (z), given above
by Eq. , can be represented as BoU(z|uo).
In the GS representation, U can be represented by

1 2
Yulelu) = ~(1 - cos px) = = sin? 22°
% %

5 (41a)

Fy(z|p) =cospx =1— wpy . (41b)
Setting ¢(*) () = Bovu(z|uo), Fo(¥?) = BoFuy(zo)
in Eq. verifies that B9 (z) = ByU(x|u0). Note that
we have chosen the arbitrary constant in the sheared-field
flux function to be such that ¢y = 0 on the y-axis. Note
also the useful identity

G+ 120E =2y (42)

where ¥{; = Yy /0x.

For devices such as the reversed-field pinch (RFP),
toa is O(1) [12]. Such a case, close to the value /2
where the toroidal field changes sign at the boundary,

is plotted above in Fig. However this RFP-like ex-
ample is not strongly relevant to devices like tokamaks
and stellarators. For these devices B is dominated by
the toroidal magnetic field B, = F(v), which can be
modeled in MRxMHD by taking poa < 1. Although
large, B, is then approximately constant, the interest-
ing physics being in the behavior of the poloidal field
B, = 0,%. Thus, rather than specifying By directly, we
find it more convenient to specify the boundary poloidal
field, By, = ), = Boyy;(alpo). Using Eq. By is then
given by

B,
BO - . 3 (43)
sin puga

which diverges in the limit poa — 0.

We denote the boundary value of the poloidal flux func-
tion by 1, = Bowu(aluo). Using Egs. and this
is given by

B,
Yo = o tan % , (44)

which approaches 1aB, as pga — 0.

To develop a tokamak-relevant set of parameters, we
set the unperturbed boundary rotational transforms to
be ¢ = +1 at « = +a. Then Eq. gives a/R =
tan poa ~ pga. For our standard tokamak-relevant refer-
ence case we take poa = 1/5, a/R = tan pga =~ 0.2027,
giving the aspect ratio R/a = 5 as shown earlier in Fig.

IV. RIPPLED STATES IN GS
REPRESENTATION

A. Rippled boundary conditions

The perfectly-conducting boundary walls are then de-
formed (rippled) by switching on, over a time short com-
pared with the reconnection timescale for the result-
ing long-lived current sheet, wavelike perturbations with
(fundamental) poloidal wave number k,. Reflection sym-
metry of both walls and plasma about the y-axis is as-
sumed, so 1 remains an even function of x.

From Eq. (40)), U(0) = e. so the resonance condition
k-B = 0 (see Sec. is satisfied at x = 0, i.e. along the
y-axis, where a shielding current sheet of full width 27a
initially forms to prevent island formation. This current
sheet cuts 2 into two disjoint subdomains, €2, between
x = 0 and upper boundary x = xpay (), and Q_, between
x = 0 and the lower boundary = = —apay(y).

We shall find the fully shielded state, immediately af-
ter the boundary perturbation is switched on, by assum-
ing Taylor relaxation occurs independently in Q4 [a spe-
cial case of the Multi-Region Relaxed MHD (MRxMHD)
problem [I4]], so the perturbed initial magnetic fields in
Q4 before reconnection of the shielding current sets in,
are found by solving Eq. under the boundary and
other conditions discussed below.



On an equilibrium current sheet it can be shown [29,
Appendix A] that the normal component of B must van-
ish. In terms of the representation Eq. , 1 is thus
constant on both sides of the current sheet. Also ¥ must
be continuous across the current sheet.

By definition, in the fully shielded state no poloidal
flux has yet been reconnected through x = 0. Also, no
poloidal flux can escape through the perfectly conducting
walls. Thus the current sheet boundary condition ¥ =
Yeus at = 0 applies, with 9., fixed at its unperturbed
value, which we have chosen to be

Yeut =0 . (45)

On the rippled walls the flux function remains ¢ = 1, to
conserve poloidal flux. Likewise toroidal flux is trapped
between the walls and current sheet, consistently with
Eq. .

We consider two methods for defining the boundary
waveform function zpay (y):

Bdy-1. The indirect implicit boundary method [30] where
we specify the boundary conditions on ¢

Y(Ea,y) — (Y(£a,y)) = 20, cos kyy . (46)

The factor v,, defined in Eq. , is introduced
in Eq. to make the ripple amplitude param-
eter a dimensionless, the factor 2 being to make
« the same as in Ref. 30/ in the limit poa — 0.

The function zpgy(y) is then defined by the
contour ¢ = Y, : & = Tpdy(y|a), with
1 constructed so as to enforce Eq. 7 the
area/toroidal flux conservation equation Eq. ,
and the magnetic helicity constraint K;—K;g = 0.
The domain Q = _UQ, is now completely spec-
ified, its complete boundary 0f) being the union
of the two external boundaries © = a4y (y) and
the internal boundary formed by the cut along
the y-axis. Note that we do not linearize with
respect to « S0 Tpdy(y) is not an exact sinusoid
in this method.

Bdy-2. The direct explicit boundary method, as used in
Fig. |1, where we prescribe xpq, to be exactly si-
nusoidal,

Zpay (y) = a(l — acoskyy) . (47)

The advantage of method Bdy{l]is that it allows a sim-
ple closed-form solution of the perturbed Beltrami equa-
tion similar to the type found by Hahm and Kulsrud [6].
The disadvantage is that xpay(y) becomes highly non-
sinusoidal at quite moderate ripple amplitudes o and the
method breaks down as « increases further.

Method Bdy+{2} on the other hand, can treat large rip-
ple amplitudes, as evidenced for instance in Fig. [[] Its
disadvantage is that 1 must be expanded in an infinite
series of higher harmonics if Eq. is to be satisfied

exactly [see Eq. (62)]. However, in practice a good ap-
proximation can be found with a reasonable number of
expansion functions. For small o the two methods are
equivalent.

B. GS equation boundary conditions

In the present application of the GS formulation our
simple boundary condition on the current sheet, Eq. (45))
allows us to identify C' immediately as F'(0), the toroidal
magnetic field on the current sheet at x = 0. However,
for a # 0, F(0) is not known a priori but must be deter-
mined along with ¢ in the solution procedure.

Unlike F(0), F is a known constant, from Eq. (36]).
Also 1 is independent of the arbitrary constant in ¢ and
is thus a better flux variable to work with. Like ¢ it
must be constant on the boundaries and current sheets,
obeying the boundary conditions

U (zpay(y),y) =va—¢, Vy (48a)
y

(48b)

1;[}( ; ):wcutfaa

Unlike 1, neither of these boundary values is known
a priori. Instead () needs to be determined, along
with u, under the Taylor relaxation constraints and the
constraint implied by Eq. ,

<1Z> =0. (49)

Substituting Eq. in Eq. gives a linear GS
equation in the form of an inhomogeneous Helmholtz
equation,

(V2 + p2) = uF . (50)

Averaging both sides of Eq. and using Eq. we
find <V21Z> = uF with

<v2iz?> - Vl% . n-vidl, (51)

where the right-hand side is found by applying Gauss’
theorem, with dl = (da? + dy?)'/? an element of length
along two contours, the upper wall © = xpqy(y) and the
upper side of the current sheet z = 0 between y = —ma
and y = mwa, n being the inward directed unit normal at
each point on €.

Noting from Eq. that (V2 + p?)yy = p, solving
Eq. can be reduced to the solution of a homogeneous
equation using the ansatz

Ua,y) = Fu(alp) + d(,y) . (52)
where 12)\ obeys the homogeneous Helmholtz equation

(V2 + %) =0 (53)



under the boundary and averaging conditions following
from Eqs. (48al-

P(@oay (1), y) = Yo — = Fyou(@vay (y)ln) Yy, (54a)

¢(Oa y) = wcut - E (54b>

() = —F o) . (54c)

Vy € cuts,

The parameter (¢y) is a functional of the boundary
shape, which may or may not be known a prior: depend-
ing on whether we use method Bdy{l] or Bdy{2] The
unknown parameters to be solved for are p, 1, and coef-

ficients of terms in the ansatz for zZ(:z:, y) to be discussed
in Sec. VDI

C. Unperturbed state: include only k;, =0

In this section we calculate expressions for initial (un-
perturbed) states before ripple is switched on. The
unperturbed state is defined by a = 0, with only z-
dependent magnetic field B (z) = ByU(x|u0), where
U is given by Eq. . The corresponding flux function
is

Yo(x) = v O (z) = Botpu(, o) (55)
where 9y is defined in Eq. (41a)).

Applying the averaging operator defined in Eq. ,
with unperturbed boundary, we find

— B
o = (1= (cos pto)) (56)
Ho
where (cos pioz), is defined in Eq. (38). Hence, in
Eq. ,
Yo(x) = Bovbu (@|0) — Py
_ 5B (sinuoa — cos x)
 ho Hoa o (57)
CLB() 172 1
= (G5 mer o)

The decomposition Eq. , zzo(x) = Fovu(z, o) +
Yo(x), implies

Wo(@) = do(z) — Fotu(, o)

Fy— By
= —— COS T
Ho Ho (58)
B .
== <sm Hod 1> COS Lo
Ho Hod

which is in the kernel of V2 + 12 as required by Eq. .

D. Rippled state: include k, # 0 terms

Here we generalize the Hahm-Kulsrud [6] solutions by
expanding in a basis of plane-wave Beltrami solutions—a
k, = 0 solution BU(z|p), with B and p to be determined,
and “ripple” solutions that are periodic in the y direction
and exponential in the x direction.

The general solution of the Beltrami equation Eq.
is a superposition of divergence-free plane wave solutions
with wave vector k' = +k/e, + k/ e, such that k™ = 1.
To satisfy 2ma topological periodicity in the y direction
we introduce the poloidal mode number, m’ = 0,1,2,...,
such that k; = m'/a. Thus Eq. implies

m/2

k/2E,LL2—k;/2:,U/2—

x

- (59)

The y-independent solutions considered in the previous
section correspond to m’ = 0, giving k/, = +u. Ripple
solutions of Hahm-Kulsrud type require imaginary k., so
we consider only the case |u| < k; and set ki, = Fir,, (1),
where

m'2 1/2
o) = (7 = )2 = (2 =) L (o)

a

In the above, m’ is the fundamental poloidal mode
number m of the imposed ripple or a harmonic, m’ = Im,
wherel = 0,1,2,3,.... We denote the fundamental ripple
wavelength by

2ma
Ap = — . 61
- (61)

The requirement V-B = 0 is ensured by using the F 1
representation Eq. , the most general 2ma-periodic
solution of Eq. 7 analytic on the halfplane =z > 0,
being

o}

~ Ilm
Yy (x,y) = co cos px + E Clm COS ™Y cosh KimT
a
1=1

= l
+ dp sin px + Z dim, COS % sinh Ky .
=1
(62)

with the corresponding solution zZ, (z,y) on the halfplane
x < 0 being given by the symmetry condition 12_ (z,y) =
Uy (lz],y)-

Our generalized Hahm-Kulsrud-type solutions/\are Su-
perpositions of the form Eq. , Y = 1+ F1y—+1) on the
cut x,y-plane, with the branch QZ = @i being chosen ac-
cording as z = 0 and the constants {c}, {d}, ¥, Yeus and
1 being chosen as described qualitatively in Secs.
Method Bdy-1 uses only | = 0 and [ = 1 while Method
Bdy-2 in principle uses [ = 0,..., 0.



V. ENERGY AND HELICITY IN GS
REPRESENTATION

A. Relative magnetic energy density

Rather than use the total magnetic energy W =
fQ B?/2uo dV we find it neater to define W, the average
energy per unit volume, multiplied by py. That is, W
is defined as (B?) /2, which we henceforth refer to sim-
ply as the energy density, there being no thermal energy,
as we have taken p = 0, and kinetic energy being neg-
ligible in adiabatic processes. Although we defined the
averaging operation in Eq. to be over €, the same
results apply in Q_ due the assumed symmetry and the
fact that the energy (and helicity—see below) densities
are even functions of x.

In GS representation Eq. (17)), and using Eq. (27), the
energy density is given by

1
W=3 (F? +|Vy?)
7 (63)
= — W s

B + Ws
where we have defined Wy, the energy density in the
internally generated (i.e. non-vacuum) field, as, using
integration by parts,

Ws = <|V{EI2 +u2{52>
(Yo — ¥)uF + w’ga_i;imh + <J2> :

(64)

N~ N -

the ripple wavelength A, being defined by Eq. (61]). In
the above manipulations we have used Eqs and
the boundary conditions Egs. and and have de-
noted the line integrals on the top/bottom surface of the
current sheet cut over one ripple wavelength by J.,

Am/2
tgzi/ Da(0£, ) dy (65)
“Am/2

where 1, (z,y) = 9yt(z,y). Taking into account the
symmetry about the y-axis we have J_ = J,.
To discover the physical meaning of Ji note that the

strength of a sheet current is j, = |[n+-V{[;]] /Mo, where

n is the unit normal at each point on the upper surface
of the current sheet and [-] denotes the jump in this
normal direction. In our case the current sheet isat z =0
and n, = e;, so

o) = —[a(01.y) — Ga(0— )] . (66)
Ho

Integrating Eq. along the current sheet we see that
the total current per ripple period in the current sheet is
J/uo where J = J, +J_ =2J,.
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Using Eq. in Eq. we find the unperturbed

internal magnetic energy,

B3
2

B
~ ?[1 +0(a*13)]

Wso = {1 — (cos N0x>02:|

(67)

The latter form being found by using Eq. , eliminat-
ing By using Eq. , and expanding in poa.

From Eq. we see that, in the “tokamak-relevant”
small-yipa limit (see Sec. [[IID)), W/Wsy is dominated by

the large vacuum toroidal field energy term 7 /2Wso,
which, from Eq. 7 is seen to diverge like 1/p2a? in this
limit. However F' is invariant under application of rip-
ple because of our constant-volume constraint Eq. .
Thus it is more instructive to work with the relative en-
ergy density,

AW = Wz — Wz]o = AWZ s (68)

where the vacuum toroidal field energy has cancelled out.

B. Relative magnetic helicity

It is readily verified, by calculating B = VXA and
comparing with Eq. , that

1 ~
A= —ye, + ;ezwi (69)

is a vector potential satisfying the requirement (see Ap-
pendix |A)) of invariance of the loop integrals fpol dl-A =
2T aWent and ftor dl-A = 27 Ry on the current sheet
(topologically a torus).

By eliminating the linear term in v from Eq. using
Eq. , an alternative form,

~ B-Ce,
I

A (70)

is found that will be useful below for relating energy and
helicity.

By analogy with W in Sec. [V A] we define the average
helicity density K = (A-B) /2 and the relative helicity
density AK = (A-B)/2 — (A-B),/2, so that, compar-
ing with Eq. the helicity constraint K; — K;p = 0 is
equivalent to

AK=0. (71)

From Eq. (70]), then Eq. and e,-B = F, and elim-
inating C with Eq. , we find the general expression

K= (A-B)

[\V]

- (72)
or

\d]

)4%
"



Below we use this result to obtain the analytical version
for K that is used in the numerical studies presented in
Sec. VIl As K = Ky after the unknowns are solved for
numerically, Eq. is used again to calculate the nu-
merical value of Wx..

The unperturbed helicity density K is simply a special
case of Eq. . Subtracting it from K and using the
invariance of F' and Eq. gives

+ % - '(/)cut J+
2004\ (73)

+ <J2> — 1o <1Z3> :

VI. SHIELDED RMP SOLUTIONS

To explore the properties of this model quantitatively
we find Beltrami solutions satisfying rippled bound-
ary conditions, appropriate to the methods discussed in
Sec. and the boundary conditions Egs. (54bH54c])
on the current sheet. To provide a complete set of equa-
tions to solve numerically we also impose helicity conser-
vation, Eq. . As Eq. conserves cross-sectional
area, toroidal flux conservation is equivalent to the con-
servation of F, which is thus still given by Eq. .

A. HKT-like rippled boundary condition

(Wi - 1)a?

: ,, — @=00s
:i 0.2040.6081.01.214 — a=0.035
I @ =002

_ig — a=0005

FIG. 4. Bdy{ll A = a = m = 1. Plots of [u(a,po) —
o/ (o) vs. o for selected values of a in the range [0, 0.05].
The coincidence of the curves shows the a-dependence has
been scaled out to high accuracy.

In this subsection we use the method Bdy{I] to specify
the rippled boundaries. Units such that 27/k, =a =1
have been used, as well as the choice A = 27/k, = a.
In this subsection we also assume L, = a, so m = 1,
but in the standard convention used elsewhere in this
paper, Ly, = 2ma, this would be equivalent to taking
m =21 =~ 6.

The analog of the Hahm-Kulsrud solution with a
shielding current sheet on the resonant surface z = 0
(denoted in [6] by subscript I, here denoted by subscript

11

“sh”), is the special case of Eq.

200,
sinh (K, )

Jsh(xay) = <| sinh £, | cos kyy

(74)
+ Ws/{—m\ sin,ux) —1pcos px ,
L

where, from Eq. , km(p) = (m?/a® — u?)"/?, where
1 = psh(Q, o), is to be determined. Comparing with
Eq. (62)), we have set ¢; and all I > 1 coefficients to
zero, but have kept all other [ =0 and [ = 1 terms. The
coefficient d; = 2a),/ sinh(k,,a) has been chosen so that
¥(a,y) automatically satisfies Eq. , the parameter «
setting the ripple amplitude. Also the coefficient ¢y = —1)
has been chosen so that 1(0,y) automatically satisfies
Eq. , with the poloidal flux conservation condition
Eq. (45).

(@ - Wo)/a?
— @=005

25—

:‘%
2.0] — a=0.035
1.5
1.0 a =002
0-5 — @ =0005

Ho

020406081.01.214

FIG. 5. de A =a=m = 1: Plots of [(a,po) —
(0, o)}/ (in units such that B, = 1) vs. uo for selected
values of « in the range [0,0.05]. (In these plots the verti-
cal ordering of « in the legends is the same as that for the
corresponding curves, shown online by color.)

(Ws - Wsq)/a?

— a=0.05
05 / — 2=0035
0.0 0204060810124 ° a=002
‘0'5, — a=0.005

FIG. 6. de A =a=m = 1: Plots of AWs(a, juo) /o> vs.
o for selected values of « in the range [0, 0.05].

ysla
400 — =005
300 — a=0035
200
a=002
100
— a =0.005

02040608101214 O

FIG. 7. Bdyfl} A = a = m = 1: Plots of ys(a, po)/cx vs. o
for selected values of « in the range [0,0.05].



By analogy with Eq. (13) of Ref. [30] in our expression
for Jsh above we have renormalized the amplitude dy of
the sin px term by setting dy = 209, Yskm /p sinh(k,a),
the dimensionless parameter g adding a constant term
to the sheet current on the z-axis—from Eq. , the
jump in O0,%¢ in the expression, Eq. , for the sheet
current j, is given by

[[aMZSh]] = Zméwﬂ(cos kyy +7s) , (75)

sinh k., a

so that the total-current parameter J, defined below

Eq. , becomes

| _ AatukmAn

. 76
sinh k,,,a 8 (76)

The boundary function xi}éy(y\a) is determined from

Eq. , the three parameters pu = g (o, o), ¥ =
Pan(a, o), and v = 8" (v, o) being determined by
solving the 3 simultaneous equations Eq. , Eq.
and Eq. , with IC given by Eq. (73)). The average en-
ergy density can then be found from Eq. or Eq. (72).

Numerical results showing the pga-dependence of p,
1, Wy, and 7g in the case ky, = 2m/a, also used in
Ref. [30] in units such that « = 1, B, = 1 [see Eq. ],
are given in Figs. [fH8 The fact that the scaled curves
for different values of a are almost identical show that
the small-amplitude scalings p — 1 oc a2, 1 — 9 o< a2,
Ws, — Wy x o2, and vg « « are a good approxima-
tion for the range o < 0.05 depicted (becoming exact
in the limit @ — 0). For ppa < 1 the plotted quanti-
ties are approximately constant with respect to ug, but
vary more rapidly above this range as ppa approaches

the value /2 = 1.57 at which B§°) = By cos pgx reverses
sign at x = +a [cf. Fig. 2f(a).].

Quite apart from demonstrating a mathematical scal-
ing law, the physics shown in Fig. [6] is worthy of remark
because of the sign of AWy and its reversal at large val-
ues of ppa. First note from Eq. that AWy and AW
are equal, so the negative values of AWs at small-to-
moderate ppa means the total magnetic field energy in
the plasma decreases as ripple is imposed. That is, the
plasma does work on the boundary. It is tempting to
interpret this as implying that a slab plasma confined by
MRxMHD interface current sheets at the vacuum-plasma
boundaries would be unstable toward spontaneous rip-
pling.

However, this conclusion would be unwarranted as the
total energy includes not only the O(a?) wave energy in
the m # 0 ripple, but also small, O(a?), nonlinear correc-
tions to the energy in the m = 0 background state. The
sign of such a background energy correction is dependent
on the precise nature of the rippling process as it could
easily be changed by allowing an O(a?) change in the
cross-sectional area A, rather than arbitrarily imposing
its constancy through through the constraint Eq. (34).
Furthermore, proper stability analysis of a free-boundary
MRxMHD plasma [25, [BT] must include the change in the
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vacuum energy outside the plasma. Such issues will be
discussed further elsewhere.

ysla
o —— — =01
- o =04
200
100 to =0.7
— Mo =1.

a
0.01 0.02 0.03 0.04 0.05

FIG. 8. de A =a = m = 1: Plots of vys(a, o)/ vs.
« for selected values of ppa within the restricted range [0, 1],
showing 7s/« is approximately constant with respect to both
variables in these ranges.

[o,wl
0.0006 — a =0.005
0.0004 a =0.003
00002 — a=0.001
\\ TN [ — y
1.0 Sof b5 1.0

FIG. 9. Bdy{l] A = a = m = 1: Plots of the jump in the
gradient of ¥, Eq. , vs. y/A for po = 1.4/a and selected
small values of a, showing the occurrence of current-density
reversal for the two smallest values.

The linear a-dependence of the dimensionless param-
eter s, shown more explicitly in Fig. |8 is particularly
interesting, in the light of Eq. , as it means the m = 0
response J scales as a2, i.e. it is nonlinear. Thus, for
small-enough values of a, the m = 0 response (the term
in vs) is dominated by the linear response (the term in
cos kyy). In this case the singular current density reverses
sign over a range of y. However, as shown in Fig.[J] above
the very small threshold value, oy, at which vg = 1, the
m = 0 nonlinear response becomes increasingly dominant
and the sheet current becomes of constant sign. (Both
figures use the same parameters, a = A\; = 1, as the
previous plots.)

As the poloidal field at the current sheet is proportional
to the current-sheet strength, Eq. , such a transition
has a profound effect on the topology of the magnetic
surfaces close to the current sheet, as illustrated in Figs.
5 and 6 of Ref. 30l and Figs [10] and [T1] of the present
paper. It is seen that small islands form near the current
sheet in the current-reversal case a < iy [32], causing
the contour ¥ = 9.y = 0 to trifurcate into upper and
lower magnetic surfaces z = xi(y\wcut) and the resonant
surface x = 0. In this case the toroidal flux function @,
Eq. , jumps at x = 0 by the amount of “private”
toroidal flux in the islands, as shown in Fig. For
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FIG. 10. de A =a = m = 1: Level surfaces of ¢ (mag-
netic surfaces) in the case po = 1.4/a, a = 0.003 < o,
showing pairs of a small islands separated by the reversed-
current section of the current sheet along the z-axis shown in

Fig. [0

W
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FIG. 11. Bdy{l] A = a = m = 1: Level surfaces of ¢ in the
case uo = 1.4/a, a = 0.005 > atnr, for which Fig. El shows
there is no current reversal and hence no magnetic islands.

a > Qinr, P(x0) is continuous at zg.

In Fig. the rotational transform, Eq. , is plot-
ted, vs. flux surface label. In this plot the amplitude
parameter a« = 0.005, a value just above where current
reversal ceases and the half-islands disappear (cf. Fig. E[)
In this case the positive current in the sheet causes the
rotational transform to change from the unperturbed res-
onant value + = 0 at = 0, jumping from a negative to a

P, Pg

0.00005

FIG. 12. Bdy{l] A = a = m = 1, taking R = a: Toroidal
flux vs. the magnetic surface label xo, the x-value where a
1-contour crosses the z-axis, in the case po = 1.4/a, o =
0.003 < aitnr. The dashed curve is for the unperturbed case
a=0.

13

105x0

FIG. 13. Bdy{ll A = a = m = 1, taking R = a: Rotational
transform vs. o in the case o = 1.4/a, o = 0.005 > aynr (see
text). The dashed curve is for the unperturbed case o = 0.

positive value across the current sheet. For smaller val-
ues of a the half-islands remove the discontinuity in .
This is because |V| = 0 at the current reversal points,
so, from Eq. (31), ¢ diverges as zp — 0, locking ¢ to
zero at zop = 0. However, the logarithmic nature of the
singularity means this approach to zero manifests itself
only at extremely small g, so the slope of #(zg) at the
origin is so high that the plots for lower a look, to the
eye, qualitatively the same as in Fig. [13|even at the very
fine resolution in zy used in this figure.

B. Sinusoidal rippled boundary condition

FIG. 14. Panels (a) and (b) show boundaries generated by
method de (blue online) for ripple amplitudes o = 0.03
and 0.2, respectively. For comparison, corresponding sinu-
soidal boundaries (dashed, orange online), as used in method
Bdy{2] are also shown. In both panels, m = 2, auo = 0.2.

In Fig.[[4we compare boundaries generated by method
Bdy{I] described in Sec.[[V'A] with the corresponding si-
nusoidal boundaries defined by Eq. . For case (a),
small amplitude ripple, method Bdy-1 produces a bound-
ary indistinguishable from the target sinusoid, but for
larger amplitude, case (b), strong second harmonic error
is clear to the eye.

In Fig. [L5| we plot the difference between the pure sinu-
soid defined by Eq. and boundaries generated by the



FIG. 15. Percentage waveform errors using Bdy2 to fit the
prescribed sinusoidal boundary in case m = 2, apuo = 0.2:
(a) at small amplitude, « = 0.03; (b) at larger amplitude,
a=0.21.

Bdy{2| method, (a) for small-amplitude ripple, a = 0.03,
and (b) for larger ripple, & = 0.21. The I-sum in Eq.
was truncated after [ = 3 (hence the dominantly | = 4 er-
ror) but even at o = 0.21 the percentage waveform error
of 1.5% is tolerable for graphical work.

[ox¥]

FIG. 16. de A = 2ma/2: Plots of the jump in the gradient
of 1, Eq. , vs. y/A for m = 2, uoa = 0.2, and the set of
amplitudes « given in the text, showing the occurrence of
current-density reversal for all amplitudes in the set.
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FIG. 17. de A = 2ma/3: Plots of the jump in the gradient
of ¥, Eq. , vs. y/A for m = 3, poa = 0.2, and amplitudes
given in the text, showing the occurrence of current-density
reversal for all but the highest amplitude.

1, Eq. (75)), in the tokamak-relevant case ppa =

Figures plot the jump in the gradient of
(75
0.2, described after Eq. .

The seven curves in
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FIG. 18. de A = 27a/4: Plots of the jump in the gradient
of ¥, Eq. , vs. y/ X for m = 4, ppa = 0.2 and amplitudes
given in the text, showing the occurrence of current-density
reversal only for the lowest amplitude.

each plot are for the set of amplitude values a =
0.03,0.06,0.09,0.12,0.15,0.18,0.21, whose corresponding
vertical-axis intersections run from bottom to top (color
online). The three figures are for three values of ripple
wave number m. The figures reveal the dramatic effect
of m on the phenomenon, illustrated in Figs. of
the locking of rotational transform at the resonant value
by half-island formation at small enough «, transition-
ing beyond a threshold value of « to the removal of the
resonance by the formation of a discontinuity in the ro-
tational transform profile at the current sheet interface.

The plots show there is qualitative transition in the ro-
tational transform profile from strong resonance locking
for m < 3 to no resonant locking, except at very small
ripple amplitude, for m > 4. (This is consistent with
the m ~ 6 results in Sec. [VI'A] where resonance locking
occurred only for extremely small .)

We interpret the stronger resonance locking at smaller
m as due to the greater penetration of the ripple per-
turbation from the boundary [z = xpay(y)] to the in-
terface [x = 0] at longer wavelengths. This is a lin-
ear, O(«), effect and can easily be seen from the factor
1/sinh kpa ~ exp(—kn,a) in Eq. and the scaling
vs  «, evident from Fig. [8] showing s can be ignored
at linear order. On the other hand, it appears the O(a?)
d.c. response from the g term is not so affected by the
exponential decay of exp(—k,,a) and begins to dominate
the linear response at larger m.

VII. CONCLUSION

In this paper we have used numerical calculations to
give an exploratory overview of a geometrically simple
application of dynamical MRxMHD in the adiabatic ap-
proximation, as well as expanding on the general formu-
lation in [I3] regarding the fundamental question of the
appropriate definition for magnetic helicity in MRxMHD.

Our calculations have confirmed the physical accessi-
bility of the static, equilibrium solutions for RMP reso-



nant states found by Loizu, Hudson et al., [15 [16], es-
tablishing the existence of a threshold RMP amplitude at
which rotational-transform jumps across the resonantly
excited current sheets occur.

While numerical calculations are a good way to explore
the implications of a theory without being tied to par-
ticular parameter ranges, for a complete understanding
they need to be complemented by analytical work in ap-
propriate asymptotic regimes. In particular, the simple
« scalings found empirically in this paper give confidence
that an amplitude expansion could give an adequate un-
derstanding of RMP screening dynamics. Such an ex-
pansion procedure will be presented elsewhere.

Another important area of research for which the HKT
model is an ideal testbed for MRxMHD are investiga-
tions of reconnection mechanisms giving rise to the tran-
sition between perturbed states, fully shielded by the res-
onantly excited current sheet, to states with fully devel-
oped resonant islands. As this involves transfer of mass,
entropy and magnetic flux between MRxMHD regions it
is related to the field of helicity injection [22H24], whose
study would require lifting the no-gaps restriction used
in this paper.

APPENDICES

Appendix A: Magnetic helicity conservation with
moving boundaries

In this Appendix we establish that the gauge constraint
on A of conservation of surface loop integrals, mentioned
in Sec. [[1] ensures time-independence of magnetic helic-
ity in an ideal plasma region Q! with boundary 99! de-
pendent on time ¢. As the guiding principle in formu-
lating MRxMHD is to invoke only constraints that are
also appropriate in ideal MHD, this ideal constraint on
A is inherited as one of the foundational postulates of
MRxMHD.

We need only the no-gaps tangential boundary condi-

tion Eq. and the ideal Ohm’s Law
E=-vxB, (A1)

which, using Maxwell’s equations, gives the equations of
motion for B and A,

0B

EZVX(VXB), (A2)
and

O0A

2 —vxB - A

T v X Vo, (A3)

where A is a single-valued vector field and ¢ is a scalar
potential, not assumed to be single-valued at this point.
Dotting both sides of Eq. with v and B we find two
differential equations for ¢,

0A

v-Vp = —V'E ,

(A4)
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and

B-Vy = _B.% _

ot (45)

Differentiating Eq. (3) and using the above assump-
tions we find the time derivative of the magnetic helicity
functional K

dK
Quod— = A:Bn-vdS
t o9

O0A 0B
:zl/mBWLﬁ
1=1 75

It is thus seen that a sufficient condition for invariance
of K is that [¢] =0, i.e. that ¢ be single valued every-
where.

We now test if single-valuedness is possible without
contradicting Galilean invariance and, if so, what restric-
tions it places on the gauge of A. We assume the plasma
is evolving under Eq. with a prescribed velocity field
v from an initially integrable state with smoothly nested
magnetic surfaces, which assumption will be hold for a
finite time by the frozen-in flux argument [IJ.

Consider first the Galilean invariance problem of a sta-
tionary state in the LAB frame as viewed from a moving
frame, so the origin of the LAB frame appears to be mov-
ing with constant velocity v, hence v = vy + vy, where
subscripts L denote LAB frame fields viewed in the mov-
ing frame, and J; in LAB frame maps to D; = 0; +vo-V
in the frame of the observer. For example, Eq. be-
comes

D;B;, = VX(VLXBL) s (A?)
On the other hand, substituting v = vg+ vy, in Eq.
we find

DB = VX (v xB).

Comparing Eq. and Eq. we see that B = By,
verifying Galilean invariance of B in “pre-Maxwell” ideal
MHD. (A Lorentz-invariant generalization of helicity has
also recently been developed [33].)

Assuming D;Aj, = 0 and ¢y, single valued, the LAB
frame version of Eq. becomes

(A8)

VQDL = v XBy, , (Ag)
It is easily seen from the LAB version of Eq. that
o1, must be constant on each magnetic surface, so, from
the LAB version of Eq. , vy, is, like B, a tangential
field on each magnetic surface.

Substituting v = vg + vy in Eq. and using
Eq. we find

V(e — L —vo-A)=—-D,A . (A10)



Taking line integrals of both sides on the magnetic sur-
faces around topologically distinct loops C}, moving at
the LAB frame velocity vy and cutting the correspond-
ing surfaces of section Sj, we have

dl-V (¢ — @1, — vo-A) = —7{ dl-D:A . (Al11)

Cz Cl

Assuming single-valuedness of ¢ (the other terms in the
LHS integrand also being single-valued) the loop integrals
on the LHS vanish. As the contours C; are stationary in
the LAB frame we can commute D; outside the integral
on the RHS to find

d

— dl-A=0.

Al12
il (A12)

Thus the loop integrals of A on magnetic surfaces are
time-invariant in all frames, which is consistent with
Galilean invariance of A: VXA = V XAy is solved by
A = A1 + Vx, where x is an arbitrary but single-valued
gauge potential. This confirms that single-valuedness of
 is consistent with Galilean invariance of K for systems
that are stationary in the LAB frame.

We now consider systems that are not stationary in
any frame, i.e. Vv is an arbitrary function of time
and space, advecting the magnetic surfaces. Can we
show that single-valuedness of ¢ always implies time-
invariance of sz dl-A around magnetic surfaces (partic-
ularly the plasma boundary) even for loops not enclosing
the plasma? If so, this is the boundary condition consis-
tent with conservation of K.

We begin with the advective [34] form of Eq. [cf.
e.g. eq. (1b) of [19]].

dA

2 (VA)v —
7 (VA)v—-Vp

=—(Vv)A-V(p—-v-A),

(A13)

where d/dt = 0, + v-V. We also need the advection of a
line element dl = r(rg+dly,t) —r(rg,t) = dly-Vor(ro, t),
where dlj is an infinitesimal displacement in the initial
position rq of a fluid element some time before the present

%dl — v(r(ro + dlo, ) — v(x(ro, ))
— dly-Vor(ro, ) VV(r, 1)) (A14)
— Vv,
Then
£ one (30t
= {a(vv-a (A15)
—dll' [(Vv)-A+V(p—v-A)}
=0

if and only if ¢ is single valued, which is also the condition
for K to be time-invariant, so the full helicity constraint
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condition in €; is conservation of K; and constancy of
§ dl-A around all topologically distinct loops on each dis-
joint component of the boundary 0f2;.

Note an additional loop integral constraint: If Q; and
(}; are neighboring regions, the corresponding loop inte-
grals ¢ , dl-A on the two sides + of the common boundary
2, ; are constrained to be equal because finiteness of B
requires there be vanishing magnetic flux trapped within
the common interface.

Appendix B: Vacuum Helicity

In this Appendix we illustrate the fact that vacuum
helicity is not geometrically invariant by showing it is not
invariant even in slab geometry (if poloidal vacuum field
is included). This shows that the Finn—Antonsen [24]
form of the magnetic helicity (equivalent to the Jensen—
Chu [22] relative helicity when there are no gaps in the
perfectly conducting boundaries) is not appropriate in
MRxMHD.

Following [35] we define the harmonic (vacuum) com-
ponent By of a Beltrami field B in an annular toroid
as the curl-free (u = 0) component carrying the toroidal
and poloidal fluxes. Specifically, consider €, for which
the toroidal (z-directed) flux is 2ra®F [F being constant
when p = 0, from Eq. (22))] and the poloidal (y-directed)
flux is, from Eq. , 2m)q R. Then

By =Fe, +e,xVy! (B1)
where the general form of y(x,y) such that V) = 0
and ¥y (0,y) = 0 is [cf. Eq. with p = 0],

- !
YR (x,y) = dff || + E dfl cos Y sinh
a
=1

Imx

with the corresponding vector potential [cf. Eq. }
A" = —yle, +e.xV (LFz?) . (B3)
The coefficients d™! are to be chosen so that the Dirichlet
boundary condition
O (@oay (1), 9) = %a Yy

is satisfied, in order to conserve poloidal flux.
Then we define the wvacuum helicity [22H24] analo-

gously to K;, Eq. , as
A".B
KE = / 1 av
Q. 2Mo
_ / [Pyt + (V3Fa®) -Vyi)]
Q4

(B4)

av .

219
Integration by parts then gives

/ [Py + Fou(@y™)]
Q4

K =
' 2Ho (B5)
.
210

Q4

-2 PR AV + 27ra2wa1 ,



using the area constraint Eq. (35)).
The term 27a?t), is invariant under changes in zpay (y).
However, there appears no reason for the integral

f9+1/)H dV, evaluated from Eq. l} as

Ta

1
v = / dy [2d?x%dy(y>
+ —Ta

= l !
+ Z djr, cos <sz> (cosh ‘mxb;yw)’ — lﬂ ,
1=1

to be invariant in general. As the vacuum helicity
Eq. includes this integral we conclude that KE is
not in general invariant and therefore not suitable for
defining a relative helicity that is conserved under defor-
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mations in boundary shape.
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