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This comment raises questions regarding the iterative approach for approximating MHD equi-
libria with pressure-gradients across the irregular, chaotic regions of non-integrable magnetic fields
suggested by Reiman et al. [1], where a non-zero, parallel pressure-gradient is supported by unspec-
ified forces. This approach, as it stands, allows for arbitrarily large pressure gradients parallel to
the magnetic field and violates quasineutrality, V - j # 0, and so V x B = j becomes meaningless.

A regularized, alternative algorithm is suggested, which guarantees that the non-ideal forces will
be small by including an anisotropic-diffusion equation for the pressure, and places the algorithm
on a reliable computational foundation: no assumptions are made regarding the structure of the
field, a source-correction term is included to ensure that the solvability conditions required to invert
magnetic differential equations are satisfied, and the inversion of singular, linear operators is avoided.

I. MHD EQUILIBRIA WITH CHAOTIC FIELDS

Increasingly it is recognized that a more detailed un-
derstanding of MHD equilibria with chaotic fields is re-
quired for both stellarators and tokamaks with applied
non-axisymmetric fields. Toroidal magnetic fields are
analogous to 1% dimensional Hamiltonian systems [2],
so configurations without a continuous symmetry will
generally be non-integrable. How does a field without
a continuously-nested family of flux-surfaces support a
non-trivial pressure?

Chaotic magnetic fields are a mix of invariant, irra-
tional surfaces that are guaranteed to survive small per-
turbations by virtue of the KAM theorem; chains of mag-
netic islands; and, where the magnetic islands overlap,
“irregular” fieldlines that wander about in a complicated
fashion and, under some conditions, seemingly diffusively
over an irregular, chaotic volume [3]. Interspersed within
the chaotic volumes are cantori, which are sets invariant
under the field-line flow that remain after the irrational
surfaces disintegrate. Because the radial fieldline flux
across cantori can be extremely small, they can present
effective partial barriers [4] and severely inhibit the “dif-
fusion” of field-lines even within the irregular volumes.

If the ideal equilibrium equation, Vp = j x B, is em-
ployed, then B - Vp = 0 and the irregular regions can-
not support pressure-gradients. To allow for pressure-
gradients across a chaotic region, additional non-ideal
forces must be included in order to balance a non-zero,
but small, parallel pressure-gradient.

One approach for constructing nearly-ideal equilibria
with non-trivial pressure is the relaxation algorithm: the
equations of weakly-resistive MHD are integrated in time
until a resistive steady-state is obtained [5]. This ap-
proach forms the basis of the HINT code [6, 7], M3D &
M3D-C1 [8, 9], and NIMROD [10], which recently has
been used [11, 12] to construct nearly-ideal equilibria in
stellarator geometry.

There is also the iterative approach [13, 14] that, rather
than attempting to follow the dynamics on the resistive
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timescale, seeks to solve for the equilibrium state directly.
This is the basis of the PIES code [15]. In the original
iterative scheme, the pressure was adjusted during the
iterations to satisfy B - Vp = 0.

A “modified” iterative method has been suggested by
Reiman et al. [1] that is claimed to compute nearly-ideal
equilibria with pressure-gradients across chaotic regions,
where the parallel pressure gradient is supported by im-
plied, non-ideal forces. This modified iterative approach
is the primary topic of this article.

II. ITERATIVE ALGORITHM

Consider the following modified, iterative algorithm [1]

Bn'VU:—V'jJ_ (2)
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where the subscript n denotes iteration. The first
equation is a statement of ideal, perpendicular force-
balance. The second equation results from quasineutral-
ity, V-j =0, by writing j=cB +j, .

The first two equations determine j given B and
Vp. Ampere’s Law is used to determine B given j, i.e.
B = (Vx)7j, where (Vx)~! represents the inverse curl
operator. If quasineutrality is not satisfied, i.e. if Eq.(2)
is not, or cannot be, solved accurately, then Ampere’s
Law becomes nonsense.

The pressure profile is to be provided. It is assumed
that the given pressure is consistent with an experimen-
tally measured profile, or perhaps an equilibrium re-
construction calculation. In the iterations Eq.(1-3), the
pressure-gradient, Vp, is taken as a given, smooth func-
tion, and is not changed during the iterations.

The magnetic field is initialized using a VMEC [16] cal-
culation, which solves Vp = j x B under the constraint
that the magnetic field has a perfect family of flux-
surfaces. The assumption of nested flux-surfaces, how-
ever, generally results in 1/ and d-function singular par-
allel currents at the rational flux-surfaces —see Eq.(5) be-
low — which the assumption-of-continuity and the finite-
difference method, as is used in VMEC, cannot accu-
rately resolve. Nevertheless, VMEC is widely recognized



as providing a good, global approximation to ideal force
balance.

The VMEC solution satisfies B - Vp = 0, and the cur-
rent is defined by j = V x B, so that V-j = 0 by construc-
tion. The energy minimization algorithm employed by
VMEC ensures that the field satisfies Vp =j x B + €f |,
where ef | is a small error that may be identified as an
unspecified, non-ideal force. If the goal is to construct a
field that almost satisfies ideal force balance consistent
with a given pressure profile, then the VMEC field will
presumably suffice.

The modified, iterative algorithm, Eq.(1-3), relaxes the
constraints on the topology of the field: islands will open
where the rotational-transform is rational and, where the
islands overlap, volumes covered by irregular fieldlines
will emerge [17]; elsewhere, irrational flux surfaces may
survive intact. It is claimed that this algorithm leads
to solutions that satisfy Vp =j x B + ef, where €f is
a small, non-ideal force that allows for non-zero, par-
allel pressure-gradients, which in turn allows for finite
pressure-gradients to be supported across the irregular,
chaotic regions. While this non-ideal force is itself left un-
specified, we may understand that the additional force is
derived from any number of implied non-ideal effects, a
small plasma flow for example.

IIT. FORCE-BALANCE

Generally we may write
jxB=Vp+2AB+u, xB, (4)

where to qualify as a physically meaningful, nearly-ideal
equilibrium it is required to show that |A| and |u, | are
small. The algorithm Eq.(1-3) guarantees that ideal, per-
pendicular force-balance is exactly satisfied by virtue of
Eq.(1), and we see immediately that u; = 0.

However, parallel force-balance is unconstrained: there
is no reason to expect that the iterative scheme, Eq.(1-
3), will result in a state where |A| is small. Unless there
is some equation that constrains parallel force-balance,
e.g. adjusting the pressure according to B-Vp =20 as
in the original iterative scheme [13-15], or more realis-
tically solving an anisotropic-diffusion equation for the
pressure as suggested in Sec.V, then the above algorithm
generally leads to the implausible result that the mag-
netic field can be arbitrarily chaotic without any impact
on the pressure-gradient. The algorithm Eq.(1-3) does
not lead to a magnetic field that is consistent with the
given pressure profile and allows for the counter-intuitive
result that islands and chaotic regions are as equally ca-
pable of supporting pressure-gradients as regions domi-
nantly filled with flux-surfaces.

In order to satisfy parallel force balance, either (i)
the pressure must be adapted to the magnetic field, i.e.
the parallel-transport problem must be addressed; or (ii)
the magnetic field must constrained in order to satisfy
B Vp=0. In the algorithm Eq.(1-3) neither of these
steps is taken: the algorithm Eq.(1-3) is incomplete.

IV. MAGNETIC DIFFERENTIAL EQUATIONS

Mathematically, the most problematical aspect of the
above algorithm is Eq.(2), the magnetic differential equa-
tion for the parallel current. This may be recognized, and
solved, as a linear equation.

A. a linear equation

In toroidal coordinates, (%,6,(), the parallel
current may be represented as a sum of Fourier
harmonics, 0 =) 0m () exp(imb —in(),  where
Omn(¥) may be discretized using finite-differences,
finite-elements, or Chebyshev polynomials. By
writing an arbitrary, chaotic magnetic field in the
general,  canonical form B =V x (V- xV(),
where X =Y Xm.n(¥) exp(imb —in¢), the equation
B:-Vo=-V-j, may be transformed, by applications
of the double-angle formulae and equating Fourier
coefficients, to a matrix equation, £ -x = ¢, where the
matrix £ = B - V depends entirely on the magnetic field,
the vector x is the solution o, ,, and ¢ depends entirely
on the “source” term, —V -j,.

If the matrix £ were non-singular, then the equation
L -x = c could be inverted and the solution for the par-
allel current would be provided with an error that re-
liably diminishes as the numerical resolution increases.
The solution is arbitrary up to a function that lies in the
null-space, £ -X = 0.

Some thought should be given to ensure that the most
accurate and efficient discretization is employed. If the
field magnetic field is integrable, straight-field-line coor-
dinates can be constructed and the magnetic field can be
written B = Vi x VO + ¢(1p)V( x Vi), where ¢ is the
rotational-transform. The directional derivative then be-
comes B-V = /g7 (9 + ¢3p). The matrix £ is diago-
nalized and the linear equation for the parallel current
reduces to

(mt—1n)0mn =1(/9V  J1L)m.n- (5)

The null-space is easily identified: this equation leaves
00,0 undetermined, which must be provided as an in-
tegration constant [1]. Unfortunately, straight field-line
coordinates, by definition, cannot be constructed in the
irregular, chaotic regions.

B. field line integration

Another method that allows the magnetic differential
equation to be solved to arbitrary precision is to integrate
along a field-line: given o at any point on a field-line, o
at every point along the field-line may be constructed by
field-line integration. If the field-line ergodically traces
out a flux-surface, then o on that surface may be con-
structed. Reiman et al. [1, 18] claim that, for chaotic
fieldlines, this approach will not yield accurate solutions
because of the difficulty of following irregular fieldlines
due to the exponential increase of small numerical errors.



However, it is easy to follow irregular lines a short dis-
tance with arbitrary accuracy: it is only after a suffi-
ciently long distance that the exponential magnification
of error will cause problems. Consider the following al-
gorithm for solving for the parallel current by directly
integrating Eq.(2). Let an initial guess for o be given
on a Poincaré section. Then, throughout the computa-
tional domain, o could be determined by field-line inte-
gration through one toroidal period. If the solvability
conditions, see Eq.(6) below, on the magnetic differential
equation were satisfied, one could then iterate on o on
the Poincaré section to obtain a single-valued solution for
the parallel current. At no point is it needed to follow
along the fieldlines a distance greater than one toroidal
period, and this may be performed to arbitrary accuracy.
For a given magnetic field, the field-line integrations need
only be performed once.

The problems with directly solving the magnetic dif-
ferential equation by field-line integration are not due to
the fact that the field may or may not be chaotic; the
problem is that the magnetic differential equation is sin-
gular — in fact, it is densely singular — and excruciating
solvability conditions [19] must be satisfied for a single-
valued solution to exist.

C. solvability conditions on periodic orbits

The magnetic differential equation, Eq.(2), describes
how o varies along a field-line. If this equation is inte-
grated along a closed magnetic field-line, i.e. a periodic
orbit, C, then for the parallel current to be single-valued
the perpendicular current must satisfy

ja{ V-j.dl/B = 0. (6)
C

This solvability condition must be satisfied on every pe-
riodic orbit.

For integrable fields, for every rational, + = n/m, there
is a family of periodic orbits that together comprise a
rational flux-surface. In this case, the singularity in oy, »,
is evident in Eq.(5), where we see that the condition for
Om,n to remain finite at + = n/m is that (\/gV - j1)m.n
must go to zero at least as fast as m+ — n.

The rational flux-surfaces are generally destroyed by
even an infinitesimal perturbation [20] and are replaced
by island chains. The Poincaré-Birkhoff theorem [21]
guarantees that, for systems with shear, for every ratio-
nal, ¢+ = n/m, two periodic orbits will survive, namely the
minimax (stable) and minimum (unstable) orbits. Ad-
ditional periodic orbits will result from period-doubling
bifurcation phenomena. From a practical perspective,
where for example a finite set of Fourier harmonics is in-
cluded in the calculation, the number of singularities in
the solution is O(M N), where M and N are the poloidal
and toroidal Fourier resolution. Neither the location of
the periodic orbits, i.e. the location of the singularities,
nor the null-space of the linear operator can be deter-
mined without some painstaking computational effort.

In the original iterative method [13-15], the pressure is
adjusted iteratively in order to satisfy B - Vp = 0. This

ensures that the solvability conditions are satisfied, as
generally we may expect that, in a neighborhood of the
periodic orbits, that islands [22] and irregular, chaotic
volumes will be present, and B - Vp = 0 ensures that Vp
and j; = B x Vp/B? will be zero.

In the iterations described by Eq.(1-3), however, there
is no reduction of the pressure-gradient across the islands
and chaotic regions. There is no reason to expect, for an
arbitrary B and Vp, that the vector j, = B x Vp/B?
satisfies the solvability conditions. If j; does not sat-
isfy the solvability conditions at the periodic orbits, then
a single-valued parallel-current that satisfies V -j = 0
cannot be constructed, and consequently Ampere’s Law
cannot be satisfied. The algorithm Eq.(1-3) breaks down.

D. resonance broadening approximation

Reiman et al. approximate the solution for the paral-
lel current by exploiting a similarity between the mag-
netic differential equation with a chaotic field, and the
non-linear equations governing the evolution of turbu-
lent plasmas, such as the collisionless Vlasov equation,
and apply the mathematical methods of turbulence the-
ory. Their argument begins by realizing that any mag-
netic field can be written B = By + dB, where By is an
integrable field and 6B is a chaos-inducing perturbation.

There is, however, some ambiguity in this decomposi-
tion. To construct the integrable field that is “nearest” to
B, it is required to minimize |§B|? in some sense, and this
leads to the theory of quadratic-flux minimizing surfaces
[23] and the closely-related ghost-surfaces [24]. Reiman
et al. suggest by following along the irregular fieldlines of
a chaotic field that straight field-line coordinates for the
appropriate, nearby integrable field can be constructed.
Reiman et al. [1] state: “The field lines in the stochastic
region are calculated to behave as if the flux surfaces are
broken only locally near the outer midplane and are pre-
served elsewhere.”; which is flagrantly inconsistent with
what is known about the break up of invariant surfaces in
Hamiltonian dynamical systems. The irregular fieldlines
are associated with the unstable manifolds of the unsta-
ble periodic orbits, and the unstable manifolds have a
fantastically complex structure.

Reiman et al. argue that statistical averaging meth-
ods can be used to solve the linear, magnetic differential
equation. Their “solution” for the parallel current is

_ (me—n)i(\/gV 'jl)m,n’ (7)

e (me—n)2+n?
where 7 is related to the magnetic field-line diffusion co-
efficient.

There is a rather simple derivation of Eq.(7) that al-
lows the approximations involved to be identified [25].
For a magnetic field B = By + B, the outstanding ef-
fect of the perturbation is to introduce a radial deriva-
tive so that B-V ~ Bg - V + §B¥3,,, where the terms
§B?/Bf and 6 B¢/ Bg are ignored. Consider applying this
operator once more to the magnetic differential equation,
B -V f =s, to obtain

(B-V)(B-Vf)=B-Vs. (8)




Realizing that for 0B = 0 the solution is singular at every
rational surface, and so the highest order radial derivative
of f will dominate, and by discarding small terms, this
may be approximated by

(Bo- V) (Bo-V) [+ (6B*)*},f=Bo Vs, (9)

which, after a suitable averaging operation, is similar
to an anisotropic-diffusion equation, and is non-singular.
While this is not a rigorous proof, it suggests that the ef-
fect of a small radial field is to induce a small diffusion of
f across the flux-surfaces of Bg. This is where the choice
of By in the decomposition B = By 4+ /B is important.

If one, conveniently, replaces the radial diffusion term,
(6BY)?03,,f, with 0 f, where 7 is a constant, then the
usual resonance broadening heuristic, Eq.(7), is obtained.
This approximation may be compared to approximating
the singular function 1/, at x = 0, by z/(2?+n?), where
7 is some small, non-zero constant. This approxima-
tion, (5Bw)2812wf ~ n?f, cannot be derived rigorously,
is not quantitatively accurate, and cannot be justified
other than an expedient simplification.

In other contexts this approximation may be useful; in
this context, perhaps not. Recall that the three steps of
the modified iterative algorithm are derived from ideal
perpendicular force-balance, quasi-neutrality, and Am-
pere’s law. The resonance broadening approximation
violates quasi-neutrality and, therefore, it also violates
Ampere’s law.

Including a perturbed radial field appears to have elim-
inated the singularity; however, Eq.(8) is no less, and
no more, singular than the original magnetic differential
equation. The singularities in the B - V operator are not
been removed by the introduction of perturbed radial
or chaotic fields. The singularities are associated with
the existence of periodic orbits, and periodic orbits are
guaranteed to survive perturbation, for any system with
shear, by the Poincaré -Birkhoff theorem [21]. Magnetic
differential equations are guaranteed to be densely sin-
gular, regardless of the degree of chaos. The resonance
broadening theory of Reiman et al. has the fatal flaw of
ignoring the resonances.

E. concerns

In addition to the fact that the algorithm suggested
by Reiman et al. does not even attempt to satisfy par-
allel force balance, and so cannot construct equilibria of
physical relevance, there are the following concerns:

1. The introduction of chaotic fields does not in itself reg-
ularize the magnetic differential equation. This equa-
tion is singular because of the existence of periodic
orbits, which are guaranteed to be densely scattered in
space, even for chaotic fields. If the solvability condi-
tions are not satisfied, then there is no single valued
solution for the parallel current.

2. Regardless of the numerical method used to solve for
the parallel current, the extent to which quasineutral-
ity is violated is determined by the extent to which the

solvability conditions, Eq.(6), on j, are violated. With
ji. = B x Vp/B?, the greater the pressure gradient
across the periodic orbits, the greater that quasineu-
trality is violated.

3. To obtain Eq.(7) it is assumed that the fieldlines are

weakly-diffusing, but the approximation that fieldlines
weakly diffuse is only reliable for magnetic fields that
are well beyond the stochastic threshold, as indicated
by the Chirikov island-overlap criterion [17], for exam-
ple. It is ridiculous that the algorithm allows the mag-
netic field to become so chaotic without any reduction
of the pressure-gradient.

4. The assumption that the magnetic islands are strongly

overlapping and the fieldlines are weakly-diffusing is
not necessarily incorrect, but it obviously not gen-
eral. Because of the “rich diversity” [26] of Hamil-
tonian chaotic dynamics, no simple assumption is reli-
able for arbitrarily perturbed fields. One cannot sim-
ply choose to consider only the strongly-chaotic field-
lines that seem to diffuse, and ignore the fieldlines that
may be periodic orbits, or lie inside magnetic islands;
KAM surfaces or cantori; Levy flights, i.e. fieldlines
that display large radial excursions; or fieldlines that
have long-time correlations due to the “stickiness” of
cantori [27]. Given that the singularities are associ-
ated with periodic orbits, the periodic orbits should
certainly not be ignored. The assumption that the
fieldlines are weakly-diffusing is not consistent with the
numerical approach, where the magnetic field is pro-
vided by inverting Ampere’s Law, Eq.(3), where no
constraints are placed on the structure of the field.

5. Eq.(7) is not an exact solution to the magnetic differ-

ential equation. Even if, by chance, the solvability con-
ditions were satisfied, the solution provided by Eq.(7)
would still violate quasineutrality.

6. Ampere’s Law cannot be satisfied if quasineutrality is

not satisfied, because V x B = j becomes nonsense if

V.j#o0.

7. A reliable numerical scheme must quantify the error

and show that the error decreases as the numerical
resolution increases; but no error estimate on the ac-
curacy of the solution provided by Eq.(7) for the par-
allel current has been provided. It is implausible, and
no supporting evidence has been presented, that the
statistical methods of turbulence theory will reliably
yield a more accurate solution of the magnetic differ-
ential equation than a direct numerical solution, such
as the methods suggested in Sec.IV A or Sec.IV B.

V. REGULARIZED ALGORITHM

The “regularized” iterative approach [25] described
in this section recognizes that the magnetic differential
equation is a linear equation, and that the problems arise
because this equation is singular and the solvability con-
ditions on the source, —V -j, are generally violated. By



explicitly including small, non-ideal effects into the nu-
merical algorithm, the equations are regularized so that
the matrix to be inverted has a well defined inverse and a
source correction term is explicitly calculated. An equa-
tion that constrains parallel force-balance is included.

Given that the parallel transport of pressure is large
but not infinite, and that collisions and other non-ideal
effects will induce a small perpendicular transport of
pressure, it is reasonable to assume that parallel force
balance will governed by the anisotropic-diffusion equa-
tion,

A\ (I{”V”p + KLVL])) =5, (10)

where the parallel derivative is Vi p=bb-Vp and
the perpendicular derivative is V,p = Vp—Vp. The
source, S, which may be a function of position, may be
adjusted as desired to drive non-trivial solutions. The
parallel diffusion is assumed to strongly dominate the
perpendicular diffusion, k) >> k. A similar suggestion
has been made by Schlutt & Hegna [28].

Solving this equation for the pressure, given the field,
will ensure that |A| in Eq.(4) is small. The pressure-
gradient will be reduced [29] across islands larger than
a critical width, Aw ~ O(k/r)*/*. In chaotic regions,
the pressure will deform and adapt to the invariant struc-
tures of the magnetic field, such as the KAM surfaces
and cantori [30]. These invariant sets impede the radial
transport of the fieldlines and so also impede the radial
transport of pressure.

As k] [k decreases, the critical island width decreases
and the pressure will adapt to structures of the chaotic
field with smaller scale length; and the numerical res-
olution required to resolve the solution increases. In
limit #, /k) — 0, the anisotropic-diffusion equation re-
duces to B - Vp = 0, which is pathological because there
is no minimum length scale to chaos: the solution has
infinite structure and infinite numerical resolution is re-
quired.

As part of earlier work on this topic [30] [31], a fourth-
order-accurate discretization of the anisotropic-diffusion
equation has been implemented, where Eq.(10) is cast
as a sparse matrix and is efficiently solved using itera-
tive Krylov methods without making any assumptions
regarding the structure of the field.

The two problems associated with the magnetic differ-
ential equation for the parallel current are (i) that the
solvability conditions must be satisfied for a single val-
ued solution to exist; and (ii) the numerical problem of
inverting a singular operator. These two problems can
be addressed simultaneously.

Using the general equation for force-balance given in
Eq.(4), the equation for the parallel current becomes

B-Vo = -V (BxVp/B*)—V-u,. (11)

The solvability conditions may be satisfied by suitably
choosing u;. We take the approach that provided u,
is small and localized to regions near the resonances, i.e.
where the solvability conditions are violated, then the
precise form of u_is inconsequential: if j; = B x Vp/B2
is inconsistent with quasineutrality, as it generally will
be, then there must be some additional, non-ideal force

that allows the solvability conditions to be satisfied and
thus allows for a finite, single-valued parallel current.

For simplicity, let u; = DV o, where D is a small
constant. The equation for the parallel current becomes
the advection-diffusion equation,

B:Vo+DV-V,o = -V-(BxVp/B?). (12)

The DV -V o constitutes a “source-correction” term,
and the linear operator, L=B -V + DV -V, to be in-
verted is non-singular. By taking D — 0, the source cor-
rection term can be made arbitrarily small except where
the solvability conditions are violated, as in these regions
we have |V 0| — oo and |DV 0| remains finite even
as D — 0. Numerically, the advection-diffusion equa-
tion is similar to the anisotropic-diffusion equation. The
advection-diffusion equation with a chaotic magnetic field
was studied in [32]. The expression for the perpendicu-
lar current, which is consistent with quasineutrality by
construction, is

jL. =B xVp/B?+ DV, o. (13)

VI. CONCLUSIONS

The regularized iterative scheme is thus: (i) given B,
the anisotropic-diffusion equation, Eq.(10), is solved for
the pressure; (ii) given B and p, the advection-diffusion
equation, Eq.(12), is solved for the parallel current; and
(iii) the magnetic field is updated by inverting Am-
pere’s law, V x B, 41 = 0B, +j.1, where j, is given by
Eq.(13).

From a numerical perspective, this algorithm has the
advantage that none of the linear operators to be in-
verted is singular — of course, this is essential for a stable,
accurate algorithm! The numerical techniques for solv-
ing the anisotropic-diffusion and the advection-diffusion
equation have already been developed and could, with
moderate effort, be implemented into the PIES algo-
rithm.

The construction of the source correction term recog-
nizes that some additional perpendicular force must drive
an additional perpendicular current, u, , if the pressure-
gradient is not zero across the resonances. This is to
ensure that the solvability conditions are satisfied. To
obtain a closed system of equations, it was assumed that
u is related to the parallel current, u;, = DV o. This
choice is somewhat arbitrary, and it would be interesting
to investigate whether u; could be related to the parallel
current using more precise physical arguments.

The magnitude of s, /k| determines the magnitude
of the non-ideal parallel force, which determines the ex-
tent to which the chaotic volumes can support pressure-
gradients. As s /k) — 0, the pressure-gradient goes to
zero across the islands and chaotic volumes, and in this
case j| = Bx Vp/B? automatically satisfies the solvabil-
ity conditions and so the perpendicular current source-
correction term is not required. However, to ensure that
the pressure is differentiable and to avoid the patholo-
gies associated with densely singular magnetic differen-
tial equations, e.g. B - Vp = 0 it is essential that r /K
be non-zero.



For small-but-finite ) /|, small pressure gradients
can be supported across the chaotic volumes and the sur-
faces of constant pressure will deform and adapt to the
structure of the cantori. As s /| is increased, the pres-
sure gradient supported across the chaotic volumes and
periodic orbits increases and the solvability conditions on
the magnetic differential equation for the parallel current
will generally be violated to a greater extent, and thus
the source correction term becomes more important. The
magnitude of the term D ultimately controls the degree
of localization of the source-correction term about the
resonances.

The regularized algorithm is consistent with the spirit
of the approach adopted by Reiman et al., that there will
be small, non-ideal forces that balance parallel pressure-

gradients and that the precise form of these non-ideal
forces is largely inconsequential. Given that the goal is
to construct nearly-ideal MHD equilibria with pressure-
gradients across arbitrarily chaotic magnetic fields, the
regularized algorithm has the following advantages: (i) it
guarantees that the non-ideal forces will indeed be small;
(ii) it guarantees that the structure of the pressure and
the magnetic field are consistent; (iii) it does not make
any assumptions regarding the chaotic structure of the
magnetic field; and (iv) the singularities in the parallel
current are removed and quasineutrality is satisfied.

Whether or not this regularized iterative algorithm has
advantates over the relaxation algorithm remains to be
determined.

[1] A. Reiman, M. C. Zarnstorff, D. Monticello, A. Weller,
J. Geiger, and the W7-A S Team. Pressure-induced
breaking of equilibrium flux surfaces in the w7as stel-
larator. Nucl. Fus., 47:572, 2007.

[2] W. D. D’haeseleer, W. N. G. Hitchon, J. D. Callen, and
J. L. Shohet. Flux Coordinates and Magnetic Field Struc-
ture. Springer, Berlin, 1991.

[3] A. J. Lichtenberg and M. A. Lieberman. Regular and
Chaotic Dynamics, 2nd ed. Springer-Verlag, New York,
1992.

[4] R. S. MacKay, J. D. Meiss, and I. C. Percival. Stochas-
ticity and transport in Hamiltonian systems. Phys. Rev.
Lett., 52(9):697, 1984.

[5] W. Park, D.A. Monticello, H. Strauss, and J. Manickam.

Three dimensional stellarator equilibrium as an ohmic

steady state. Phys. Fluids, 29(4):1171, 1986.

K. Harafuji, T. Hayashi, and T. Sato. Computa-

tional study of three dimensional magnetohydrodynamic

equlibria in toroidal systems. J. Comp. Phys., 81(1):169,

1989.

Y. Suzuki, N. Nakajima, K. Watanabe, Y. Nakamura,

and T. Hayashi. Development and application of HINT2

to helical system plasmas. Nucl. Fus., 46:1.19, 2006.

W. Park, E.V. Belova, G. Fu, X.Z. Tang, H.R. Strauss,

and L.E. Sugiyama. Plasma simultation studies using

multilevel physics models. Phys. Plasmas, 6(5):1796,

1999.

[9] S. C. Jardin, J. Breslau, and N. Ferraro. A high-order
implicit finite element method for integrating the two-
fluid magnetohydrodynamic equations in two dimensions.
J. Comp. Phys., 226:2146, 2007.

[10] C. R. Sovinec, T. A. Gianakon, E. D. Held, S. E. Kruger,
and D. D. Schnack. Nimrod: A computational labora-
tory for studying nonlinear fusion magnetohydrodynam-
ics. Phys. Plasmas, 10(5):1727, 2003.

[11] M. G Schlutt, C. C. Hegna, C. R. Sovinec, S. F. Knowl-
ton, and J. D. Hebert. Numerical simulation of current
evolution in the Compact Toroidal Hybrid. Nucl. Fus.,
52:103023, 2012.

[12] M. G. Schlutt, C. C. Hegna, C. R. Sovinec, E. D. Held,
and S. E. Kruger. Self-consistent simulations of nonlinear
magnetohydrodynamics and profile evolution in stellara-
tor configurations. Phys. Plasmas, 20(5):056104, 2013.

[13] L. Spitzer. The stellarator concept. Phys. Fluids,
1(4):253, 1958.

[14] A. H. Boozer. Three-dimensional stellarator equlibria by
iteration. Phys. Fluids, 27(8):2110, 1984.

6

7

8

[15] A. H. Reiman and H. S. Greenside. Calculation of three-
dimensional MHD equilibria with islands and stochastic
regions. Comp. Phys. Comm., 43:157, 1986.

[16] S. P. Hirshman, W. I. van Rij, and P. Merkel. Three-
dimensional free boundary calculations using a spectral
Green’s function method. Comp. Phys. Comm., 43:143,
1986.

[17] B. Chirikov. A universal instability of many dimensional
oscillator systems. Phys. Rep., 52(5):263, 1979.

[18] J. A Krommes and A. H Reiman. Plasma equilibrium in
a magnetic field with stochastic regions. Phys. Plasmas,
16:072308, 2009.

[19] W. A. Newcomb. Magnetic diferential equations. Phys.
Fluids, 2(4):362, 1959.

[20] J. M. Greene. A method for determining a stochastic
transition. J. Math. Phys., 20(6):1183, 1979.

[21] J. D. Meiss. Symplectic maps, variational principles &
transport. Rev. Mod. Phys., 64(3):795, 1992.

[22] A. H. Reiman, N. Pomphrey, and A. H. Boozer. Three
dimensional plasma equilibrium near a separatrix. Phys.
Fluids B, 1(3):555, 1989.

[23] R. L. Dewar, S. R. Hudson, and P. Price. Almost invari-
ant manifolds for divergence free fields. Phys. Lett. A,
194:49, 1994.

[24] S. R. Hudson and R. L Dewar. Are ghost-surfaces
quadratic-flux minimizing?  Phys. Lett. A, 373:4409,
2009.

[25] S. R. Hudson. A regularized approach for solving mag-
netic differential equations and a revised iterative equi-
librium algorithm. Phys. Plasmas, 17:114501, 2010.

[26] R.B. White, S. Benkadda, S. Kassibrakis, and G.M. Za-
slavsky. Near threshold anomalous transport in the stan-
dard map. Chaos, 8(4):757, 1998.

[27] C. F. F. Karney. Long-time correlations in the stochastic
regime. Physica D, 8(3):360, 1983.

[28] M. G Schlutt and C. C. Hegna. The effect of anisotropic
heat transport on magnetic islands in 3-d configurations.
Phys. Plasmas, 19(8):082514, 2012.

[29] R. Fitzpatrick. Helical temperature perturbation asso-
ciated with tearing modes in tokamak plasmas. Phys.
Plasmas, 2(3):825, 1995.

[30] S. R. Hudson and J. Breslau. Temperature contours and
ghost-surfaces for chaotic magnetic fields. Phys. Rev.
Lett., 100(9):095001, 2008.

[31] S. R. Hudson. An expression for the temperature gradient
in chaotic fields. Phys. Plasmas, 16:010701, 2009.

[32] S. R. Hudson. Steady state solutions to the advection



diffusion equation and ghost coordinates for a chaotic
magnetic field. Phys. Rev. E., 76:046211, 2007.



