ig00aa

briefly	
[called by: mp00ac, dforce.]	[calls: coords.]
contents	

1

ig00aa		
1.1	enclosed currents	1
1.2	"Fourier integration"	1

1.1 enclosed currents

1. In the vacuum region, the enclosed currents are given by either surface integrals of the current density or line integrals of the magnetic field,

$$\int_{\mathcal{S}} \mathbf{j} \cdot d\mathbf{s} = \int_{\partial \mathcal{S}} \mathbf{B} \cdot d\mathbf{l},\tag{1}$$

and line integrals are usually easier to compute than surface integrals . . .

- 2. The magnetic field is given by the curl of the magnetic vector potential, as described in e.g. bfield.
- 3. The toroidal, plasma current is obtained by taking a "poloidal" loop, $d\mathbf{l} = \mathbf{e}_{\theta} d\theta$, on the plasma boundary, where $B^s = 0$, to obtain

$$I \equiv \int_{0}^{2\pi} \mathbf{B} \cdot \mathbf{e}_{\theta} \, d\theta = \int_{0}^{2\pi} \left(-\partial_{s} A_{\zeta} \, \bar{g}_{\theta\theta} + \partial_{s} A_{\theta} \, \bar{g}_{\theta\zeta} \right) \, d\theta, \tag{2}$$

where $\bar{g}_{\mu\nu} \equiv g_{\mu\nu}/\sqrt{g}$.

4. The poloidal, "linking" current through the torus is obtained by taking a "toroidal" loop, $d\mathbf{l} = \mathbf{e}_{\zeta} d\zeta$, on the plasma boundary to obtain

$$G \equiv \int_0^{2\pi} \mathbf{B} \cdot \mathbf{e}_{\zeta} \, d\zeta = \int_0^{2\pi} (-\partial_s A_{\zeta} \, \bar{g}_{\theta\zeta} + \partial_s A_{\theta} \, \bar{g}_{\zeta\zeta}) \, d\zeta. \tag{3}$$

1.2 "Fourier integration"

1. Using $f \equiv -\partial_s A_{\zeta} \ \bar{g}_{\theta\theta} + \partial_s A_{\theta} \ \bar{g}_{\theta\zeta}$, the integral for the plasma current is

$$I = \sum_{i}^{\prime} f_i \cos(n_i \zeta) 2\pi, \tag{4}$$

where \sum' includes only the $m_i = 0$ harmonics.

2. Using $g \equiv -\partial_s A_{\zeta} \bar{g}_{\theta\zeta} + \partial_s A_{\theta} \bar{g}_{\zeta\zeta}$, the integral for the linking current is

$$G = \sum_{i}^{\prime} g_i \cos(m_i \zeta) 2\pi, \tag{5}$$

where \sum' includes only the $n_i = 0$ harmonics.

3. The plasma current, Eqn.(4), should be independent of ζ , and the linking current, Eqn.(5), should be independent of θ . (Perhaps this can be proved analytically; in any case it should be confirmed numerically.)

ig00aa.h last modified on 2017-02-24 13:55:08;	SPEC subroutines;
--	-------------------